mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-25 17:19:09 +00:00
feat: init LSC fitting
cuda and cpu-based LSC fitting using cupy and numpy Signed-off-by: Dev Singh <dev@devksingh.com>
This commit is contained in:
parent
9bb8b23b76
commit
4e2054a95b
@ -4,3 +4,4 @@ scipy
|
|||||||
scikit-learn
|
scikit-learn
|
||||||
six
|
six
|
||||||
matplotlib
|
matplotlib
|
||||||
|
cupy
|
@ -2,7 +2,7 @@
|
|||||||
# Written by Arthur Lu & Jacob Levine
|
# Written by Arthur Lu & Jacob Levine
|
||||||
# Notes:
|
# Notes:
|
||||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||||
# this module is cuda-optimized and vectorized (except for one small part)
|
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "0.0.4"
|
__version__ = "0.0.4"
|
||||||
@ -25,7 +25,8 @@ __changelog__ = """
|
|||||||
|
|
||||||
__author__ = (
|
__author__ = (
|
||||||
"Jacob Levine <jlevine@imsa.edu>",
|
"Jacob Levine <jlevine@imsa.edu>",
|
||||||
"Arthur Lu <learthurgo@gmail.com>"
|
"Arthur Lu <learthurgo@gmail.com>",
|
||||||
|
"Dev Singh <dev@devksingh.com>"
|
||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
@ -44,6 +45,8 @@ __all__ = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
import cupy as cp
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
global device
|
global device
|
||||||
|
|
||||||
@ -218,3 +221,61 @@ def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iter
|
|||||||
ls.backward()
|
ls.backward()
|
||||||
optim.step()
|
optim.step()
|
||||||
return kernel
|
return kernel
|
||||||
|
|
||||||
|
class CircleFit:
|
||||||
|
"""Class to fit data to a circle using both the Least Square Circle (LSC) method and the HyperFit method"""
|
||||||
|
# For more information on the LSC method, see:
|
||||||
|
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
|
||||||
|
def __init__(self, x, y, xy=None):
|
||||||
|
if data != None:
|
||||||
|
self.coords = data
|
||||||
|
self.ournp = np if device === "cpu" else cp # use the correct numpy implementation based on resources available
|
||||||
|
else:
|
||||||
|
# following block combines x and y into one array if not already done
|
||||||
|
self.coords = self.ournp.vstack(([x_data.T], [y_data.T])).T
|
||||||
|
if device !== "cpu"
|
||||||
|
cp.cuda.Stream.null.synchronize() # ensure code finishes executing on GPU before continuing
|
||||||
|
def calc_R(x, y, xc, yc):
|
||||||
|
"""Returns distance between center and point"""
|
||||||
|
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
|
||||||
|
def f(c, x, y):
|
||||||
|
"""Returns distance between point and circle at c"""
|
||||||
|
Ri = calc_R(x, y, *c)
|
||||||
|
return Ri - Ri.mean()
|
||||||
|
def LSC(self):
|
||||||
|
"""Fits given data to a circle and returns the center, radius, and variance"""
|
||||||
|
x = coords[:, 0]
|
||||||
|
y = coords[:, 1]
|
||||||
|
# guessing at a center
|
||||||
|
x_m = self.ournp.mean(x)
|
||||||
|
y_m = self.ournp.mean(y)
|
||||||
|
|
||||||
|
# calculation of the reduced coordinates
|
||||||
|
u = x - x_m
|
||||||
|
v = y - y_m
|
||||||
|
|
||||||
|
# linear system defining the center (uc, vc) in reduced coordinates:
|
||||||
|
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
|
||||||
|
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
|
||||||
|
Suv = self.ournp.sum(u*v)
|
||||||
|
Suu = self.ournp.sum(u**2)
|
||||||
|
Svv = self.ournp.sum(v**2)
|
||||||
|
Suuv = self.ournp.sum(u**2 * v)
|
||||||
|
Suvv = self.ournp.sum(u * v**2)
|
||||||
|
Suuu = self.ournp.sum(u**3)
|
||||||
|
Svvv = self.ournp.sum(v**3)
|
||||||
|
|
||||||
|
# Solving the linear system
|
||||||
|
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
|
||||||
|
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
|
||||||
|
uc, vc = self.ournp.linalg.solve(A, B)
|
||||||
|
|
||||||
|
xc_1 = x_m + uc
|
||||||
|
yc_1 = y_m + vc
|
||||||
|
|
||||||
|
# Calculate the distances from center (xc_1, yc_1)
|
||||||
|
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
|
||||||
|
R_1 = self.ournp.mean(Ri_1)
|
||||||
|
# calcualte residual error
|
||||||
|
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
|
||||||
|
return xc_1, yc_1, R_1, residu_1
|
Loading…
Reference in New Issue
Block a user