analysis.py v 1.1.12.005

analysis pkg v 1.0.0.002
This commit is contained in:
ltcptgeneral 2020-03-04 18:55:45 -06:00
parent 0d120e572f
commit 49c8bcafde
7 changed files with 109 additions and 39 deletions

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1 Metadata-Version: 2.1
Name: analysis Name: analysis
Version: 1.0.0.1 Version: 1.0.0.2
Summary: analysis package developed by Titan Scouting for The Red Alliance Summary: analysis package developed by Titan Scouting for The Red Alliance
Home-page: https://github.com/titanscout2022/tr2022-strategy Home-page: https://github.com/titanscout2022/tr2022-strategy
Author: The Titan Scouting Team Author: The Titan Scouting Team

View File

@ -7,10 +7,12 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.12.004" __version__ = "1.1.12.005"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.12.005:
- fixed numba issues by removing numba from elo, glicko2 and trueskill
1.1.12.004: 1.1.12.004:
- renamed gliko to glicko - renamed gliko to glicko
1.1.12.003: 1.1.12.003:
@ -384,14 +386,12 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
return regressions return regressions
@jit(nopython=True)
def elo(starting_score, opposing_score, observed, N, K): def elo(starting_score, opposing_score, observed, N, K):
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N)) expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
return starting_score + K*(np.sum(observed) - np.sum(expected)) return starting_score + K*(np.sum(observed) - np.sum(expected))
@jit(forceobj=True)
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations): def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol) player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
@ -400,7 +400,6 @@ def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_
return (player.rating, player.rd, player.vol) return (player.rating, player.rd, player.vol)
@jit(forceobj=True)
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]] def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
team_ratings = [] team_ratings = []

View File

@ -7,10 +7,12 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.12.004" __version__ = "1.1.12.005"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.12.005:
- fixed numba issues by removing numba from elo, glicko2 and trueskill
1.1.12.004: 1.1.12.004:
- renamed gliko to glicko - renamed gliko to glicko
1.1.12.003: 1.1.12.003:
@ -384,14 +386,12 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
return regressions return regressions
@jit(nopython=True)
def elo(starting_score, opposing_score, observed, N, K): def elo(starting_score, opposing_score, observed, N, K):
expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N)) expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N))
return starting_score + K*(np.sum(observed) - np.sum(expected)) return starting_score + K*(np.sum(observed) - np.sum(expected))
@jit(forceobj=True)
def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations): def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol) player = Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
@ -400,7 +400,6 @@ def glicko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_
return (player.rating, player.rd, player.vol) return (player.rating, player.rd, player.vol)
@jit(forceobj=True)
def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]] def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
team_ratings = [] team_ratings = []

Binary file not shown.

Binary file not shown.

View File

@ -2,7 +2,7 @@ import setuptools
setuptools.setup( setuptools.setup(
name="analysis", # Replace with your own username name="analysis", # Replace with your own username
version="1.0.0.001", version="1.0.0.002",
author="The Titan Scouting Team", author="The Titan Scouting Team",
author_email="titanscout2022@gmail.com", author_email="titanscout2022@gmail.com",
description="analysis package developed by Titan Scouting for The Red Alliance", description="analysis package developed by Titan Scouting for The Red Alliance",

View File

@ -158,24 +158,96 @@ def push_to_database(apikey, competition, results, metrics):
def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update def metricsloop(tbakey, apikey, competition, timestamp): # listener based metrics update
elo_N = 400
elo_K = 24
matches = d.pull_new_tba_matches(tbakey, competition, timestamp) matches = d.pull_new_tba_matches(tbakey, competition, timestamp)
red = load_metrics(apikey, competition, matches, "red") return_vector = {}
blu = load_metrics(apikey, competition, matches, "blue")
for match in matches:
red = load_metrics(apikey, competition, match, "red")
blu = load_metrics(apikey, competition, match, "blue")
elo_red_total = 0 elo_red_total = 0
elo_blu_total = 0 elo_blu_total = 0
gl2_red_total = 0 gl2_red_score_total = 0
gl2_blu_total + 0 gl2_blu_score_total = 0
gl2_red_rd_total = 0
gl2_blu_rd_total = 0
gl2_red_vol_total = 0
gl2_blu_vol_total = 0
for team in red: for team in red:
return elo_red_total += red[team]["elo"]["score"]
def load_metrics(apikey, competition, matches, group_name): gl2_red_score_total += red[team]["gl2"]["score"]
gl2_red_rd_total += red[team]["gl2"]["rd"]
gl2_red_vol_total += red[team]["gl2"]["vol"]
for match in matches: for team in blu:
elo_blu_total += blu[team]["elo"]["score"]
gl2_blu_score_total += blu[team]["gl2"]["score"]
gl2_blu_rd_total += blu[team]["gl2"]["rd"]
gl2_blu_vol_total += blu[team]["gl2"]["vol"]
red_elo = {"score": elo_red_total / len(red)}
blu_elo = {"score": elo_blu_total / len(blu)}
red_gl2 = {"score": gl2_red_score_total / len(red), "rd": gl2_red_rd_total / len(red), "vol": gl2_red_vol_total / len(red)}
blu_gl2 = {"score": gl2_blu_score_total / len(blu), "rd": gl2_blu_rd_total / len(blu), "vol": gl2_blu_vol_total / len(blu)}
if(match["winner"] == "red"):
observations = {"red": 1, "blue": 0}
elif(match["winner"] == "blue"):
observations = {"red": 0, "blue": 1}
else:
observations = {"red": 0.5, "blue": 0.5}
red_elo_delta = an.elo(red_elo["score"], blu_elo["score"], [observations["red"], observations["blue"]], elo_N, elo_K) - red_elo["score"]
blu_elo_delta = an.elo(blu_elo["score"], red_elo["score"], [observations["blue"], observations["red"]], elo_N, elo_K) - blu_elo["score"]
new_red_gl2_score, new_red_gl2_rd, new_red_gl2_vol = an.glicko2(red_gl2["score"], red_gl2["rd"], red_gl2["vol"], [blu_gl2["score"]], [blu_gl2["rd"]], [observations["red"], observations["blue"]])
new_blu_gl2_score, new_blu_gl2_rd, new_blu_gl2_vol = an.glicko2(blu_gl2["score"], blu_gl2["rd"], blu_gl2["vol"], [red_gl2["score"]], [red_gl2["rd"]], [observations["blue"], observations["red"]])
red_gl2_delta = {"score": new_red_gl2_score - red_gl2["score"], "rd": new_red_gl2_rd - red_gl2["rd"], "vol": new_red_gl2_vol - red_gl2["vol"]}
blu_gl2_delta = {"score": new_blu_gl2_score - blu_gl2["score"], "rd": new_blu_gl2_rd - blu_gl2["rd"], "vol": new_blu_gl2_vol - blu_gl2["vol"]}
for team in red:
red[team]["elo"]["score"] = red[team]["elo"]["score"] + red_elo_delta
red[team]["gl2"]["score"] = red[team]["gl2"]["score"] + red_gl2_delta["score"]
red[team]["gl2"]["rd"] = red[team]["gl2"]["rd"] + red_gl2_delta["rd"]
red[team]["gl2"]["vol"] = red[team]["gl2"]["vol"] + red_gl2_delta["vol"]
for team in blu:
blu[team]["elo"]["score"] = blu[team]["elo"]["score"] + blu_elo_delta
blu[team]["gl2"]["score"] = blu[team]["gl2"]["score"] + blu_gl2_delta["score"]
blu[team]["gl2"]["rd"] = blu[team]["gl2"]["rd"] + blu_gl2_delta["rd"]
blu[team]["gl2"]["vol"] = blu[team]["gl2"]["vol"] + blu_gl2_delta["vol"]
return_vector.update(red)
return_vector.update(blu)
return return_vector
def load_metrics(apikey, competition, match, group_name):
for team in match[group_name]: for team in match[group_name]: