analysis.py v 1.1.6.002

This commit is contained in:
art 2019-11-05 12:56:53 -06:00
parent bfa69bf070
commit 3c21512a46

View File

@ -7,68 +7,70 @@
# current benchmark of optimization: 1.33 times faster
# setup:
__version__ = "1.1.6.001"
__version__ = "1.1.6.002"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.1.6.001:
1.1.6.002:
- changed layout of __changelog to be vscode friendly
1.1.6.001:
- added additional hyperparameters to decisiontree()
1.1.6.000:
1.1.6.000:
- fixed __version__
- fixed __all__ order
- added decisiontree()
1.1.5.003:
1.1.5.003:
- added pca
1.1.5.002:
1.1.5.002:
- reduced import list
- added kmeans clustering engine
1.1.5.001:
1.1.5.001:
- simplified regression by using .to(device)
1.1.5.000:
1.1.5.000:
- added polynomial regression to regression(); untested
1.1.4.000:
1.1.4.000:
- added trueskill()
1.1.3.002:
1.1.3.002:
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
1.1.3.001:
1.1.3.001:
- changed glicko2() to return tuple instead of array
1.1.3.000:
1.1.3.000:
- added glicko2_engine class and glicko()
- verified glicko2() accuracy
1.1.2.003:
1.1.2.003:
- fixed elo()
1.1.2.002:
1.1.2.002:
- added elo()
- elo() has bugs to be fixed
1.1.2.001:
1.1.2.001:
- readded regrression import
1.1.2.000:
1.1.2.000:
- integrated regression.py as regression class
- removed regression import
- fixed metadata for regression class
- fixed metadata for analysis class
1.1.1.001:
1.1.1.001:
- regression_engine() bug fixes, now actaully regresses
1.1.1.000:
1.1.1.000:
- added regression_engine()
- added all regressions except polynomial
1.1.0.007:
1.1.0.007:
- updated _init_device()
1.1.0.006:
1.1.0.006:
- removed useless try statements
1.1.0.005:
1.1.0.005:
- removed impossible outcomes
1.1.0.004:
1.1.0.004:
- added performance metrics (r^2, mse, rms)
1.1.0.003:
1.1.0.003:
- resolved nopython mode for mean, median, stdev, variance
1.1.0.002:
1.1.0.002:
- snapped (removed) majority of uneeded imports
- forced object mode (bad) on all jit
- TODO: stop numba complaining about not being able to compile in nopython mode
1.1.0.001:
1.1.0.001:
- removed from sklearn import * to resolve uneeded wildcard imports
1.1.0.000:
1.1.0.000:
- removed c_entities,nc_entities,obstacles,objectives from __all__
- applied numba.jit to all functions
- depreciated and removed stdev_z_split
@ -77,93 +79,93 @@ __changelog__ = """changelog:
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
- optimized z_normalize using sklearn.preprocessing.normalize
- TODO: implement kernel/function based pytorch regression optimizer
1.0.9.000:
1.0.9.000:
- refactored
- numpyed everything
- removed stats in favor of numpy functions
1.0.8.005:
1.0.8.005:
- minor fixes
1.0.8.004:
1.0.8.004:
- removed a few unused dependencies
1.0.8.003:
1.0.8.003:
- added p_value function
1.0.8.002:
1.0.8.002:
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
1.0.8.001:
1.0.8.001:
- refactors
- bugfixes
1.0.8.000:
1.0.8.000:
- depreciated histo_analysis_old
- depreciated debug
- altered basic_analysis to take array data instead of filepath
- refactor
- optimization
1.0.7.002:
1.0.7.002:
- bug fixes
1.0.7.001:
1.0.7.001:
- bug fixes
1.0.7.000:
1.0.7.000:
- added tanh_regression (logistical regression)
- bug fixes
1.0.6.005:
1.0.6.005:
- added z_normalize function to normalize dataset
- bug fixes
1.0.6.004:
1.0.6.004:
- bug fixes
1.0.6.003:
1.0.6.003:
- bug fixes
1.0.6.002:
1.0.6.002:
- bug fixes
1.0.6.001:
1.0.6.001:
- corrected __all__ to contain all of the functions
1.0.6.000:
1.0.6.000:
- added calc_overfit, which calculates two measures of overfit, error and performance
- added calculating overfit to optimize_regression
1.0.5.000:
1.0.5.000:
- added optimize_regression function, which is a sample function to find the optimal regressions
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
- planned addition: overfit detection in the optimize_regression function
1.0.4.002:
1.0.4.002:
- added __changelog__
- updated debug function with log and exponential regressions
1.0.4.001:
1.0.4.001:
- added log regressions
- added exponential regressions
- added log_regression and exp_regression to __all__
1.0.3.008:
1.0.3.008:
- added debug function to further consolidate functions
1.0.3.007:
1.0.3.007:
- added builtin benchmark function
- added builtin random (linear) data generation function
- added device initialization (_init_device)
1.0.3.006:
1.0.3.006:
- reorganized the imports list to be in alphabetical order
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
1.0.3.005:
1.0.3.005:
- major bug fixes
- updated historical analysis
- depreciated old historical analysis
1.0.3.004:
1.0.3.004:
- added __version__, __author__, __all__
- added polynomial regression
- added root mean squared function
- added r squared function
1.0.3.003:
1.0.3.003:
- bug fixes
- added c_entities
1.0.3.002:
1.0.3.002:
- bug fixes
- added nc_entities, obstacles, objectives
- consolidated statistics.py to analysis.py
1.0.3.001:
1.0.3.001:
- compiled 1d, column, and row basic stats into basic stats function
1.0.3.000:
1.0.3.000:
- added historical analysis function
1.0.2.xxx:
1.0.2.xxx:
- added z score test
1.0.1.xxx:
1.0.1.xxx:
- major bug fixes
1.0.0.xxx:
1.0.0.xxx:
- added loading csv
- added 1d, column, row basic stats
"""