mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
Merge branch 'master' into master-staged
This commit is contained in:
commit
350e0f9ed3
@ -24,5 +24,5 @@
|
||||
"ms-python.python",
|
||||
"waderyan.gitblame"
|
||||
],
|
||||
"postCreateCommand": "apt install vim -y ; pip install -r data-analysis/requirements.txt ; pip install -r analysis-master/requirements.txt ; pip install tra-analysis"
|
||||
"postCreateCommand": "apt install vim -y ; pip install -r data-analysis/requirements.txt ; pip install -r analysis-master/requirements.txt ; pip install pylint ; pip install tra-analysis"
|
||||
}
|
6
SECURITY.md
Normal file
6
SECURITY.md
Normal file
@ -0,0 +1,6 @@
|
||||
# Security Policy
|
||||
|
||||
|
||||
## Reporting a Vulnerability
|
||||
|
||||
Please email `titanscout2022@gmail.com` to report a vulnerability.
|
@ -1,8 +1,11 @@
|
||||
from tra_analysis import analysis as an
|
||||
from tra_analysis import metrics
|
||||
from tra_analysis import fits
|
||||
|
||||
def test_():
|
||||
test_data_linear = [1, 3, 6, 7, 9]
|
||||
x_data_circular = []
|
||||
y_data_circular = []
|
||||
y_data_ccu = [1, 3, 7, 14, 21]
|
||||
y_data_ccd = [1, 5, 7, 8.5, 8.66]
|
||||
test_data_scrambled = [-32, 34, 19, 72, -65, -11, -43, 6, 85, -17, -98, -26, 12, 20, 9, -92, -40, 98, -78, 17, -20, 49, 93, -27, -24, -66, 40, 84, 1, -64, -68, -25, -42, -46, -76, 43, -3, 30, -14, -34, -55, -13, 41, -30, 0, -61, 48, 23, 60, 87, 80, 77, 53, 73, 79, 24, -52, 82, 8, -44, 65, 47, -77, 94, 7, 37, -79, 36, -94, 91, 59, 10, 97, -38, -67, 83, 54, 31, -95, -63, 16, -45, 21, -12, 66, -48, -18, -96, -90, -21, -83, -74, 39, 64, 69, -97, 13, 55, 27, -39]
|
||||
@ -28,4 +31,5 @@ def test_():
|
||||
assert all(a == b for a, b in zip(an.Sort().shellsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().bubblesort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().cyclesort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().cocktailsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().cocktailsort(test_data_scrambled), test_data_sorted))
|
||||
assert fits.CircleFit(x=[0,0,-1,1], y=[1, -1, 0, 0]).LSC() == (0.0, 0.0, 1.0, 0.0)
|
85
analysis-master/tra_analysis/fits.py
Normal file
85
analysis-master/tra_analysis/fits.py
Normal file
@ -0,0 +1,85 @@
|
||||
# Titan Robotics Team 2022: CPU fitting models
|
||||
# Written by Dev Singh
|
||||
# Notes:
|
||||
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.1"
|
||||
|
||||
# changelog should be viewed using print(analysis.fits.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
0.0.1:
|
||||
- initial release, add circle fitting with LSC
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Dev Singh <dev@devksingh.com>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'CircleFit'
|
||||
]
|
||||
|
||||
import numpy as np
|
||||
|
||||
class CircleFit:
|
||||
"""Class to fit data to a circle using the Least Square Circle (LSC) method"""
|
||||
# For more information on the LSC method, see:
|
||||
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
|
||||
def __init__(self, x, y, xy=None):
|
||||
self.ournp = np #todo: implement cupy correctly
|
||||
if type(x) == list:
|
||||
x = np.array(x)
|
||||
if type(y) == list:
|
||||
y = np.array(y)
|
||||
if type(xy) == list:
|
||||
xy = np.array(xy)
|
||||
if xy != None:
|
||||
self.coords = xy
|
||||
else:
|
||||
# following block combines x and y into one array if not already done
|
||||
self.coords = self.ournp.vstack(([x.T], [y.T])).T
|
||||
def calc_R(x, y, xc, yc):
|
||||
"""Returns distance between center and point"""
|
||||
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
|
||||
def f(c, x, y):
|
||||
"""Returns distance between point and circle at c"""
|
||||
Ri = calc_R(x, y, *c)
|
||||
return Ri - Ri.mean()
|
||||
def LSC(self):
|
||||
"""Fits given data to a circle and returns the center, radius, and variance"""
|
||||
x = self.coords[:, 0]
|
||||
y = self.coords[:, 1]
|
||||
# guessing at a center
|
||||
x_m = self.ournp.mean(x)
|
||||
y_m = self.ournp.mean(y)
|
||||
|
||||
# calculation of the reduced coordinates
|
||||
u = x - x_m
|
||||
v = y - y_m
|
||||
|
||||
# linear system defining the center (uc, vc) in reduced coordinates:
|
||||
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
|
||||
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
|
||||
Suv = self.ournp.sum(u*v)
|
||||
Suu = self.ournp.sum(u**2)
|
||||
Svv = self.ournp.sum(v**2)
|
||||
Suuv = self.ournp.sum(u**2 * v)
|
||||
Suvv = self.ournp.sum(u * v**2)
|
||||
Suuu = self.ournp.sum(u**3)
|
||||
Svvv = self.ournp.sum(v**3)
|
||||
|
||||
# Solving the linear system
|
||||
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
|
||||
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
|
||||
uc, vc = self.ournp.linalg.solve(A, B)
|
||||
|
||||
xc_1 = x_m + uc
|
||||
yc_1 = y_m + vc
|
||||
|
||||
# Calculate the distances from center (xc_1, yc_1)
|
||||
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
|
||||
R_1 = self.ournp.mean(Ri_1)
|
||||
# calculate residual error
|
||||
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
|
||||
return (xc_1, yc_1, R_1, residu_1)
|
@ -1,8 +1,9 @@
|
||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||
# Not actively maintained, may be removed in future release
|
||||
# Written by Arthur Lu & Jacob Levine
|
||||
# Notes:
|
||||
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||||
# this module is cuda-optimized and vectorized (except for one small part)
|
||||
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.4"
|
||||
@ -25,7 +26,7 @@ __changelog__ = """
|
||||
|
||||
__author__ = (
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Arthur Lu <learthurgo@gmail.com>"
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
@ -40,14 +41,15 @@ __all__ = [
|
||||
'ExpRegKernel',
|
||||
'SigmoidalRegKernelArthur',
|
||||
'SGDTrain',
|
||||
'CustomTrain'
|
||||
'CustomTrain',
|
||||
'CircleFit'
|
||||
]
|
||||
|
||||
import torch
|
||||
|
||||
global device
|
||||
|
||||
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
#todo: document completely
|
||||
|
||||
@ -217,4 +219,4 @@ def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iter
|
||||
ls=loss(pred,ground_cuda)
|
||||
ls.backward()
|
||||
optim.step()
|
||||
return kernel
|
||||
return kernel
|
||||
|
@ -1,6 +1,7 @@
|
||||
{
|
||||
"max-threads": 0.5,
|
||||
"team": "",
|
||||
"competition": "2020ilch",
|
||||
"competition": "",
|
||||
"key":{
|
||||
"database":"",
|
||||
"tba":""
|
||||
|
@ -1,4 +1,4 @@
|
||||
requests
|
||||
pymongo
|
||||
pandas
|
||||
dnspython
|
||||
tra-analysis
|
@ -3,10 +3,18 @@
|
||||
# Notes:
|
||||
# setup:
|
||||
|
||||
__version__ = "0.7.0"
|
||||
__version__ = "0.8.2"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
0.8.2:
|
||||
- readded while true to main function
|
||||
- added more thread config options
|
||||
0.8.1:
|
||||
- optimized matchloop further by bypassing GIL
|
||||
0.8.0:
|
||||
- added multithreading to matchloop
|
||||
- tweaked user log
|
||||
0.7.0:
|
||||
- finished implementing main function
|
||||
0.6.2:
|
||||
@ -114,16 +122,25 @@ __all__ = [
|
||||
|
||||
from tra_analysis import analysis as an
|
||||
import data as d
|
||||
from collections import defaultdict
|
||||
import json
|
||||
import math
|
||||
import numpy as np
|
||||
import os
|
||||
from os import system, name
|
||||
from pathlib import Path
|
||||
from multiprocessing import Pool
|
||||
import matplotlib.pyplot as plt
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import time
|
||||
import warnings
|
||||
|
||||
global exec_threads
|
||||
|
||||
def main():
|
||||
|
||||
global exec_threads
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
while (True):
|
||||
@ -138,6 +155,23 @@ def main():
|
||||
metrics_tests = config["statistics"]["metric"]
|
||||
print("[OK] configs loaded")
|
||||
|
||||
print("[OK] starting threads")
|
||||
cfg_max_threads = config["max-threads"]
|
||||
sys_max_threads = os.cpu_count()
|
||||
if cfg_max_threads > -sys_max_threads and cfg_max_threads < 0 :
|
||||
alloc_processes = sys_max_threads + cfg_max_threads
|
||||
elif cfg_max_threads > 0 and cfg_max_threads < 1:
|
||||
alloc_processes = math.floor(cfg_max_threads * sys_max_threads)
|
||||
elif cfg_max_threads > 1 and cfg_max_threads <= sys_max_threads:
|
||||
alloc_processes = cfg_max_threads
|
||||
elif cfg_max_threads == 0:
|
||||
alloc_processes = sys_max_threads
|
||||
else:
|
||||
print("[Err] Invalid number of processes, must be between -" + str(sys_max_threads) + " and " + str(sys_max_threads))
|
||||
exit()
|
||||
exec_threads = Pool(processes = alloc_processes)
|
||||
print("[OK] " + str(alloc_processes) + " threads started")
|
||||
|
||||
apikey = config["key"]["database"]
|
||||
tbakey = config["key"]["tba"]
|
||||
print("[OK] loaded keys")
|
||||
@ -151,15 +185,15 @@ def main():
|
||||
pit_data = load_pit(apikey, competition)
|
||||
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running tests")
|
||||
print("[OK] running match stats")
|
||||
start = time.time()
|
||||
matchloop(apikey, competition, match_data, match_tests)
|
||||
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
|
||||
print("[OK] finished match stats in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running metrics")
|
||||
print("[OK] running team metrics")
|
||||
start = time.time()
|
||||
metricloop(tbakey, apikey, competition, previous_time, metrics_tests)
|
||||
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
|
||||
print("[OK] finished team metrics in " + str(time.time() - start) + " seconds")
|
||||
|
||||
print("[OK] running pit analysis")
|
||||
start = time.time()
|
||||
@ -217,48 +251,78 @@ def load_match(apikey, competition):
|
||||
|
||||
return d.get_match_data_formatted(apikey, competition)
|
||||
|
||||
def simplestats(data_test):
|
||||
|
||||
data = np.array(data_test[0])
|
||||
data = data[np.isfinite(data)]
|
||||
ranges = list(range(len(data)))
|
||||
|
||||
test = data_test[1]
|
||||
|
||||
if test == "basic_stats":
|
||||
return an.basic_stats(data)
|
||||
|
||||
if test == "historical_analysis":
|
||||
return an.histo_analysis([ranges, data])
|
||||
|
||||
if test == "regression_linear":
|
||||
return an.regression(ranges, data, ['lin'])
|
||||
|
||||
if test == "regression_logarithmic":
|
||||
return an.regression(ranges, data, ['log'])
|
||||
|
||||
if test == "regression_exponential":
|
||||
return an.regression(ranges, data, ['exp'])
|
||||
|
||||
if test == "regression_polynomial":
|
||||
return an.regression(ranges, data, ['ply'])
|
||||
|
||||
if test == "regression_sigmoidal":
|
||||
return an.regression(ranges, data, ['sig'])
|
||||
|
||||
def matchloop(apikey, competition, data, tests): # expects 3D array with [Team][Variable][Match]
|
||||
|
||||
def simplestats(data, test):
|
||||
global exec_threads
|
||||
|
||||
data = np.array(data)
|
||||
data = data[np.isfinite(data)]
|
||||
ranges = list(range(len(data)))
|
||||
|
||||
if test == "basic_stats":
|
||||
return an.basic_stats(data)
|
||||
|
||||
if test == "historical_analysis":
|
||||
return an.histo_analysis([ranges, data])
|
||||
|
||||
if test == "regression_linear":
|
||||
return an.regression(ranges, data, ['lin'])
|
||||
|
||||
if test == "regression_logarithmic":
|
||||
return an.regression(ranges, data, ['log'])
|
||||
|
||||
if test == "regression_exponential":
|
||||
return an.regression(ranges, data, ['exp'])
|
||||
|
||||
if test == "regression_polynomial":
|
||||
return an.regression(ranges, data, ['ply'])
|
||||
|
||||
if test == "regression_sigmoidal":
|
||||
return an.regression(ranges, data, ['sig'])
|
||||
class AutoVivification(dict):
|
||||
def __getitem__(self, item):
|
||||
try:
|
||||
return dict.__getitem__(self, item)
|
||||
except KeyError:
|
||||
value = self[item] = type(self)()
|
||||
return value
|
||||
|
||||
return_vector = {}
|
||||
|
||||
team_filtered = []
|
||||
variable_filtered = []
|
||||
variable_data = []
|
||||
test_filtered = []
|
||||
result_filtered = []
|
||||
return_vector = AutoVivification()
|
||||
|
||||
for team in data:
|
||||
variable_vector = {}
|
||||
|
||||
for variable in data[team]:
|
||||
test_vector = {}
|
||||
variable_data = data[team][variable]
|
||||
|
||||
if variable in tests:
|
||||
|
||||
for test in tests[variable]:
|
||||
test_vector[test] = simplestats(variable_data, test)
|
||||
else:
|
||||
pass
|
||||
variable_vector[variable] = test_vector
|
||||
return_vector[team] = variable_vector
|
||||
|
||||
team_filtered.append(team)
|
||||
variable_filtered.append(variable)
|
||||
variable_data.append((data[team][variable], test))
|
||||
test_filtered.append(test)
|
||||
|
||||
result_filtered = exec_threads.map(simplestats, variable_data)
|
||||
i = 0
|
||||
|
||||
result_filtered = list(result_filtered)
|
||||
|
||||
for result in result_filtered:
|
||||
|
||||
return_vector[team_filtered[i]][variable_filtered[i]][test_filtered[i]] = result
|
||||
i += 1
|
||||
|
||||
push_match(apikey, competition, return_vector)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user