mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
Merge pull request #71 from titanscouting/submoduling
Merge submoduling into master-staged
This commit is contained in:
commit
31bee6c304
@ -1,2 +1,7 @@
|
||||
FROM python
|
||||
WORKDIR ~/
|
||||
FROM ubuntu:20.04
|
||||
WORKDIR /
|
||||
RUN apt-get -y update
|
||||
RUN DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends tzdata
|
||||
RUN apt-get install -y python3 python3-dev git python3-pip python3-kivy python-is-python3 libgl1-mesa-dev build-essential
|
||||
RUN ln -s $(which pip3) /usr/bin/pip
|
||||
RUN pip install pymongo pandas numpy scipy scikit-learn matplotlib pylint kivy
|
2
.devcontainer/dev-dockerfile
Normal file
2
.devcontainer/dev-dockerfile
Normal file
@ -0,0 +1,2 @@
|
||||
FROM titanscout2022/tra-analysis-base:latest
|
||||
WORKDIR /
|
@ -1,7 +1,7 @@
|
||||
{
|
||||
"name": "TRA Analysis Development Environment",
|
||||
"build": {
|
||||
"dockerfile": "Dockerfile",
|
||||
"dockerfile": "dev-dockerfile",
|
||||
},
|
||||
"settings": {
|
||||
"terminal.integrated.shell.linux": "/bin/bash",
|
||||
@ -24,5 +24,5 @@
|
||||
"ms-python.python",
|
||||
"waderyan.gitblame"
|
||||
],
|
||||
"postCreateCommand": "apt install vim -y ; pip install -r data-analysis/requirements.txt ; pip install -r analysis-master/requirements.txt ; pip install pylint ; pip install tra-analysis"
|
||||
"postCreateCommand": "/usr/bin/pip3 install -r /workspaces/red-alliance-analysis/data-analysis/requirements.txt && /usr/bin/pip3 install -r /workspaces/red-alliance-analysis/analysis-master/requirements.txt && /usr/bin/pip3 install --no-cache-dir pylint && pip3 install pytest"
|
||||
}
|
7
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
7
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
Fixes #
|
||||
|
||||
## Proposed Changes
|
||||
|
||||
-
|
||||
-
|
||||
-
|
5
.gitignore
vendored
5
.gitignore
vendored
@ -38,4 +38,7 @@ analysis-master/tra_analysis/.ipynb_checkpoints
|
||||
.pytest_cache
|
||||
analysis-master/tra_analysis/metrics/__pycache__
|
||||
analysis-master/dist
|
||||
data-analysis/config/
|
||||
data-analysis/config/
|
||||
analysis-master/tra_analysis/equation/__pycache__/*
|
||||
analysis-master/tra_analysis/equation/parser/__pycache__/*
|
||||
analysis-master/tra_analysis/equation/parser/Hybrid_Utils/__pycache__/*
|
||||
|
@ -1,6 +1,6 @@
|
||||
numba
|
||||
numpy
|
||||
scipy
|
||||
scikit-learn
|
||||
six
|
||||
matplotlib
|
||||
matplotlib
|
||||
pyparsing
|
@ -1,4 +1,5 @@
|
||||
import setuptools
|
||||
import tra_analysis
|
||||
|
||||
requirements = []
|
||||
|
||||
@ -8,11 +9,11 @@ with open("requirements.txt", 'r') as file:
|
||||
|
||||
setuptools.setup(
|
||||
name="tra_analysis",
|
||||
version="2.1.0",
|
||||
version=tra_analysis.__version__,
|
||||
author="The Titan Scouting Team",
|
||||
author_email="titanscout2022@gmail.com",
|
||||
description="Analysis package developed by Titan Scouting for The Red Alliance",
|
||||
long_description="",
|
||||
long_description="../README.md",
|
||||
long_description_content_type="text/markdown",
|
||||
url="https://github.com/titanscout2022/tr2022-strategy",
|
||||
packages=setuptools.find_packages(),
|
||||
@ -21,6 +22,8 @@ setuptools.setup(
|
||||
classifiers=[
|
||||
"Programming Language :: Python :: 3",
|
||||
"Operating System :: OS Independent",
|
||||
"Topic :: Data Analysis"
|
||||
],
|
||||
python_requires='>=3.6',
|
||||
keywords="data analysis tools"
|
||||
)
|
@ -1,15 +1,44 @@
|
||||
from tra_analysis import analysis as an
|
||||
from tra_analysis import metrics
|
||||
from tra_analysis import fits
|
||||
import numpy as np
|
||||
import sklearn
|
||||
from sklearn import metrics
|
||||
|
||||
from tra_analysis import Analysis as an
|
||||
from tra_analysis import Array
|
||||
from tra_analysis import ClassificationMetric
|
||||
from tra_analysis import CorrelationTest
|
||||
from tra_analysis import Fit
|
||||
from tra_analysis import KNN
|
||||
from tra_analysis import NaiveBayes
|
||||
from tra_analysis import RandomForest
|
||||
from tra_analysis import RegressionMetric
|
||||
from tra_analysis import Sort
|
||||
from tra_analysis import StatisticalTest
|
||||
from tra_analysis import SVM
|
||||
|
||||
from tra_analysis.equation.parser import BNF
|
||||
|
||||
def test_():
|
||||
|
||||
test_data_linear = [1, 3, 6, 7, 9]
|
||||
test_data_linear2 = [2, 2, 5, 7, 13]
|
||||
test_data_array = Array(test_data_linear)
|
||||
|
||||
x_data_circular = []
|
||||
y_data_circular = []
|
||||
|
||||
y_data_ccu = [1, 3, 7, 14, 21]
|
||||
y_data_ccd = [1, 5, 7, 8.5, 8.66]
|
||||
|
||||
test_data_scrambled = [-32, 34, 19, 72, -65, -11, -43, 6, 85, -17, -98, -26, 12, 20, 9, -92, -40, 98, -78, 17, -20, 49, 93, -27, -24, -66, 40, 84, 1, -64, -68, -25, -42, -46, -76, 43, -3, 30, -14, -34, -55, -13, 41, -30, 0, -61, 48, 23, 60, 87, 80, 77, 53, 73, 79, 24, -52, 82, 8, -44, 65, 47, -77, 94, 7, 37, -79, 36, -94, 91, 59, 10, 97, -38, -67, 83, 54, 31, -95, -63, 16, -45, 21, -12, 66, -48, -18, -96, -90, -21, -83, -74, 39, 64, 69, -97, 13, 55, 27, -39]
|
||||
test_data_sorted = [-98, -97, -96, -95, -94, -92, -90, -83, -79, -78, -77, -76, -74, -68, -67, -66, -65, -64, -63, -61, -55, -52, -48, -46, -45, -44, -43, -42, -40, -39, -38, -34, -32, -30, -27, -26, -25, -24, -21, -20, -18, -17, -14, -13, -12, -11, -3, 0, 1, 6, 7, 8, 9, 10, 12, 13, 16, 17, 19, 20, 21, 23, 24, 27, 30, 31, 34, 36, 37, 39, 40, 41, 43, 47, 48, 49, 53, 54, 55, 59, 60, 64, 65, 66, 69, 72, 73, 77, 79, 80, 82, 83, 84, 85, 87, 91, 93, 94, 97, 98]
|
||||
|
||||
test_data_2D_pairs = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
|
||||
test_data_2D_positive = np.array([[23, 51], [21, 32], [15, 25], [17, 31]])
|
||||
test_output = np.array([1, 3, 4, 5])
|
||||
test_labels_2D_pairs = np.array([1, 1, 2, 2])
|
||||
validation_data_2D_pairs = np.array([[-0.8, -1], [0.8, 1.2]])
|
||||
validation_labels_2D_pairs = np.array([1, 2])
|
||||
|
||||
assert an.basic_stats(test_data_linear) == {"mean": 5.2, "median": 6.0, "standard-deviation": 2.85657137141714, "variance": 8.16, "minimum": 1.0, "maximum": 9.0}
|
||||
assert an.z_score(3.2, 6, 1.5) == -1.8666666666666665
|
||||
assert an.z_normalize([test_data_linear], 1).tolist() == [[0.07537783614444091, 0.22613350843332272, 0.45226701686664544, 0.5276448530110863, 0.6784005252999682]]
|
||||
@ -21,15 +50,144 @@ def test_():
|
||||
assert an.Metric().elo(1500, 1500, [1, 0], 400, 24) == 1512.0
|
||||
assert an.Metric().glicko2(1500, 250, 0.06, [1500, 1400], [250, 240], [1, 0]) == (1478.864307445517, 195.99122679202452, 0.05999602937563585)
|
||||
#assert an.Metric().trueskill([[(25, 8.33), (24, 8.25), (32, 7.5)], [(25, 8.33), (25, 8.33), (21, 6.5)]], [1, 0]) == [(metrics.trueskill.Rating(mu=21.346, sigma=7.875), metrics.trueskill.Rating(mu=20.415, sigma=7.808), metrics.trueskill.Rating(mu=29.037, sigma=7.170)), (metrics.trueskill.Rating(mu=28.654, sigma=7.875), metrics.trueskill.Rating(mu=28.654, sigma=7.875), metrics.trueskill.Rating(mu=23.225, sigma=6.287))]
|
||||
assert all(a == b for a, b in zip(an.Sort().quicksort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().mergesort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().introsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().heapsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().insertionsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().timsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().selectionsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().shellsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().bubblesort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().cyclesort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(an.Sort().cocktailsort(test_data_scrambled), test_data_sorted))
|
||||
assert fits.CircleFit(x=[0,0,-1,1], y=[1, -1, 0, 0]).LSC() == (0.0, 0.0, 1.0, 0.0)
|
||||
|
||||
assert test_data_array.elementwise_mean() == 5.2
|
||||
assert test_data_array.elementwise_median() == 6.0
|
||||
assert test_data_array.elementwise_stdev() == 2.85657137141714
|
||||
assert test_data_array.elementwise_variance() == 8.16
|
||||
assert test_data_array.elementwise_npmin() == 1
|
||||
assert test_data_array.elementwise_npmax() == 9
|
||||
assert test_data_array.elementwise_stats() == (5.2, 6.0, 2.85657137141714, 8.16, 1, 9)
|
||||
|
||||
classif_metric = ClassificationMetric(test_data_linear2, test_data_linear)
|
||||
assert classif_metric[0].all() == metrics.confusion_matrix(test_data_linear, test_data_linear2).all()
|
||||
assert classif_metric[1] == metrics.classification_report(test_data_linear, test_data_linear2)
|
||||
|
||||
assert all(np.isclose(list(CorrelationTest.anova_oneway(test_data_linear, test_data_linear2).values()), [0.05825242718446602, 0.8153507906592907], rtol=1e-10))
|
||||
assert all(np.isclose(list(CorrelationTest.pearson(test_data_linear, test_data_linear2).values()), [0.9153061540753287, 0.02920895440940868], rtol=1e-10))
|
||||
assert all(np.isclose(list(CorrelationTest.spearman(test_data_linear, test_data_linear2).values()), [0.9746794344808964, 0.004818230468198537], rtol=1e-10))
|
||||
assert all(np.isclose(list(CorrelationTest.point_biserial(test_data_linear, test_data_linear2).values()), [0.9153061540753287, 0.02920895440940868], rtol=1e-10))
|
||||
assert all(np.isclose(list(CorrelationTest.kendall(test_data_linear, test_data_linear2).values()), [0.9486832980505137, 0.022977401503206086], rtol=1e-10))
|
||||
assert all(np.isclose(list(CorrelationTest.kendall_weighted(test_data_linear, test_data_linear2).values()), [0.9750538072369643, np.nan], rtol=1e-10, equal_nan=True))
|
||||
|
||||
assert Fit.CircleFit(x=[0,0,-1,1], y=[1, -1, 0, 0]).LSC() == (0.0, 0.0, 1.0, 0.0)
|
||||
|
||||
model, metric = KNN.knn_classifier(test_data_2D_pairs, test_labels_2D_pairs, 2)
|
||||
assert isinstance(model, sklearn.neighbors.KNeighborsClassifier)
|
||||
assert np.array([[0,0], [2,0]]).all() == metric[0].all()
|
||||
assert ' precision recall f1-score support\n\n 1 0.00 0.00 0.00 0.0\n 2 0.00 0.00 0.00 2.0\n\n accuracy 0.00 2.0\n macro avg 0.00 0.00 0.00 2.0\nweighted avg 0.00 0.00 0.00 2.0\n' == metric[1]
|
||||
model, metric = KNN.knn_regressor(test_data_2D_pairs, test_output, 2)
|
||||
assert isinstance(model, sklearn.neighbors.KNeighborsRegressor)
|
||||
assert (-25.0, 6.5, 2.5495097567963922) == metric
|
||||
|
||||
model, metric = NaiveBayes.gaussian(test_data_2D_pairs, test_labels_2D_pairs)
|
||||
assert isinstance(model, sklearn.naive_bayes.GaussianNB)
|
||||
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
|
||||
model, metric = NaiveBayes.multinomial(test_data_2D_positive, test_labels_2D_pairs)
|
||||
assert isinstance(model, sklearn.naive_bayes.MultinomialNB)
|
||||
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
|
||||
model, metric = NaiveBayes.bernoulli(test_data_2D_pairs, test_labels_2D_pairs)
|
||||
assert isinstance(model, sklearn.naive_bayes.BernoulliNB)
|
||||
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
|
||||
model, metric = NaiveBayes.complement(test_data_2D_positive, test_labels_2D_pairs)
|
||||
assert isinstance(model, sklearn.naive_bayes.ComplementNB)
|
||||
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
|
||||
|
||||
model, metric = RandomForest.random_forest_classifier(test_data_2D_pairs, test_labels_2D_pairs, 0.3, 2)
|
||||
assert isinstance(model, sklearn.ensemble.RandomForestClassifier)
|
||||
assert metric[0].all() == np.array([[0, 0], [2, 0]]).all()
|
||||
model, metric = RandomForest.random_forest_regressor(test_data_2D_pairs, test_labels_2D_pairs, 0.3, 2)
|
||||
assert isinstance(model, sklearn.ensemble.RandomForestRegressor)
|
||||
assert metric == (0.0, 1.0, 1.0)
|
||||
|
||||
assert RegressionMetric(test_data_linear, test_data_linear2)== (0.7705314009661837, 3.8, 1.9493588689617927)
|
||||
|
||||
assert all(a == b for a, b in zip(Sort.quicksort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.mergesort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.heapsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.introsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.insertionsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.timsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.selectionsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.shellsort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.bubblesort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.cyclesort(test_data_scrambled), test_data_sorted))
|
||||
assert all(a == b for a, b in zip(Sort.cocktailsort(test_data_scrambled), test_data_sorted))
|
||||
|
||||
assert Fit.CircleFit(x=[0,0,-1,1], y=[1, -1, 0, 0]).LSC() == (0.0, 0.0, 1.0, 0.0)
|
||||
|
||||
svm(test_data_2D_pairs, test_labels_2D_pairs, validation_data_2D_pairs, validation_labels_2D_pairs)
|
||||
test_equation()
|
||||
|
||||
def svm(data, labels, test_data, test_labels):
|
||||
|
||||
lin_kernel = SVM.PrebuiltKernel.Linear()
|
||||
#ply_kernel = SVM.PrebuiltKernel.Polynomial(3, 0)
|
||||
rbf_kernel = SVM.PrebuiltKernel.RBF('scale')
|
||||
sig_kernel = SVM.PrebuiltKernel.Sigmoid(0)
|
||||
|
||||
lin_kernel = SVM.fit(lin_kernel, data, labels)
|
||||
#ply_kernel = SVM.fit(ply_kernel, data, labels)
|
||||
rbf_kernel = SVM.fit(rbf_kernel, data, labels)
|
||||
sig_kernel = SVM.fit(sig_kernel, data, labels)
|
||||
|
||||
for i in range(len(test_data)):
|
||||
|
||||
assert lin_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
|
||||
|
||||
#for i in range(len(test_data)):
|
||||
|
||||
# assert ply_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
|
||||
|
||||
for i in range(len(test_data)):
|
||||
|
||||
assert rbf_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
|
||||
|
||||
for i in range(len(test_data)):
|
||||
|
||||
assert sig_kernel.predict([test_data[i]]).tolist() == [test_labels[i]]
|
||||
|
||||
def test_equation():
|
||||
|
||||
parser = BNF()
|
||||
|
||||
assert parser.eval("9") == 9.0
|
||||
assert parser.eval("-9") == -9.0
|
||||
assert parser.eval("--9") == 9.0
|
||||
assert parser.eval("-E") == -2.718281828459045
|
||||
assert parser.eval("9 + 3 + 6") == 18.0
|
||||
assert parser.eval("9 + 3 / 11") == 9.272727272727273
|
||||
assert parser.eval("(9 + 3)") == 12.0
|
||||
assert parser.eval("(9+3) / 11") == 1.0909090909090908
|
||||
assert parser.eval("9 - 12 - 6") == -9.0
|
||||
assert parser.eval("9 - (12 - 6)") == 3.0
|
||||
assert parser.eval("2*3.14159") == 6.28318
|
||||
assert parser.eval("3.1415926535*3.1415926535 / 10") == 0.9869604400525172
|
||||
assert parser.eval("PI * PI / 10") == 0.9869604401089358
|
||||
assert parser.eval("PI*PI/10") == 0.9869604401089358
|
||||
assert parser.eval("PI^2") == 9.869604401089358
|
||||
assert parser.eval("round(PI^2)") == 10
|
||||
assert parser.eval("6.02E23 * 8.048") == 4.844896e+24
|
||||
assert parser.eval("e / 3") == 0.9060939428196817
|
||||
assert parser.eval("sin(PI/2)") == 1.0
|
||||
assert parser.eval("10+sin(PI/4)^2") == 10.5
|
||||
assert parser.eval("trunc(E)") == 2
|
||||
assert parser.eval("trunc(-E)") == -2
|
||||
assert parser.eval("round(E)") == 3
|
||||
assert parser.eval("round(-E)") == -3
|
||||
assert parser.eval("E^PI") == 23.140692632779263
|
||||
assert parser.eval("exp(0)") == 1.0
|
||||
assert parser.eval("exp(1)") == 2.718281828459045
|
||||
assert parser.eval("2^3^2") == 512.0
|
||||
assert parser.eval("(2^3)^2") == 64.0
|
||||
assert parser.eval("2^3+2") == 10.0
|
||||
assert parser.eval("2^3+5") == 13.0
|
||||
assert parser.eval("2^9") == 512.0
|
||||
assert parser.eval("sgn(-2)") == -1
|
||||
assert parser.eval("sgn(0)") == 0
|
||||
assert parser.eval("sgn(0.1)") == 1
|
||||
assert parser.eval("sgn(cos(PI/4))") == 1
|
||||
assert parser.eval("sgn(cos(PI/2))") == 0
|
||||
assert parser.eval("sgn(cos(PI*3/4))") == -1
|
||||
assert parser.eval("+(sgn(cos(PI/4)))") == 1
|
||||
assert parser.eval("-(sgn(cos(PI/4)))") == -1
|
||||
|
@ -1,35 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"string = \"3+4+5\"\n",
|
||||
"re.sub(\"\\d+[+]{1}\\d+\", string, sum([int(i) for i in re.split(\"[+]{1}\", re.search(\"\\d+[+]{1}\\d+\", string).group())]))"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
635
analysis-master/tra_analysis/Analysis.py
Normal file
635
analysis-master/tra_analysis/Analysis.py
Normal file
@ -0,0 +1,635 @@
|
||||
# Titan Robotics Team 2022: Analysis Module
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import Analysis'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has been optimized for multhreaded computing
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "3.0.1"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
3.0.1:
|
||||
- removed numba dependency and calls
|
||||
3.0.0:
|
||||
- exported several submodules to their own files while preserving backwards compatibility:
|
||||
- Array
|
||||
- ClassificationMetric
|
||||
- CorrelationTest
|
||||
- KNN
|
||||
- NaiveBayes
|
||||
- RandomForest
|
||||
- RegressionMetric
|
||||
- Sort
|
||||
- StatisticalTest
|
||||
- SVM
|
||||
- note: above listed submodules will not be supported in the future
|
||||
- future changes to all submodules will be held in their respective changelogs
|
||||
- future changes altering the parent package will be held in the __changelog__ of the parent package (in __init__.py)
|
||||
- changed reference to module name to Analysis
|
||||
2.3.1:
|
||||
- fixed bugs in Array class
|
||||
2.3.0:
|
||||
- overhauled Array class
|
||||
2.2.3:
|
||||
- fixed spelling of RandomForest
|
||||
- made n_neighbors required for KNN
|
||||
- made n_classifiers required for SVM
|
||||
2.2.2:
|
||||
- fixed 2.2.1 changelog entry
|
||||
- changed regression to return dictionary
|
||||
2.2.1:
|
||||
- changed all references to parent package analysis to tra_analysis
|
||||
2.2.0:
|
||||
- added Sort class
|
||||
- added several array sorting functions to Sort class including:
|
||||
- quick sort
|
||||
- merge sort
|
||||
- intro(spective) sort
|
||||
- heap sort
|
||||
- insertion sort
|
||||
- tim sort
|
||||
- selection sort
|
||||
- bubble sort
|
||||
- cycle sort
|
||||
- cocktail sort
|
||||
- tested all sorting algorithms with both lists and numpy arrays
|
||||
- depreciated sort function from Array class
|
||||
- added warnings as an import
|
||||
2.1.4:
|
||||
- added sort and search functions to Array class
|
||||
2.1.3:
|
||||
- changed output of basic_stats and histo_analysis to libraries
|
||||
- fixed __all__
|
||||
2.1.2:
|
||||
- renamed ArrayTest class to Array
|
||||
2.1.1:
|
||||
- added add, mul, neg, and inv functions to ArrayTest class
|
||||
- added normalize function to ArrayTest class
|
||||
- added dot and cross functions to ArrayTest class
|
||||
2.1.0:
|
||||
- added ArrayTest class
|
||||
- added elementwise mean, median, standard deviation, variance, min, max functions to ArrayTest class
|
||||
- added elementwise_stats to ArrayTest which encapsulates elementwise statistics
|
||||
- appended to __all__ to reflect changes
|
||||
2.0.6:
|
||||
- renamed func functions in regression to lin, log, exp, and sig
|
||||
2.0.5:
|
||||
- moved random_forrest_regressor and random_forrest_classifier to RandomForrest class
|
||||
- renamed Metrics to Metric
|
||||
- renamed RegressionMetrics to RegressionMetric
|
||||
- renamed ClassificationMetrics to ClassificationMetric
|
||||
- renamed CorrelationTests to CorrelationTest
|
||||
- renamed StatisticalTests to StatisticalTest
|
||||
- reflected rafactoring to all mentions of above classes/functions
|
||||
2.0.4:
|
||||
- fixed __all__ to reflected the correct functions and classes
|
||||
- fixed CorrelationTests and StatisticalTests class functions to require self invocation
|
||||
- added missing math import
|
||||
- fixed KNN class functions to require self invocation
|
||||
- fixed Metrics class functions to require self invocation
|
||||
- various spelling fixes in CorrelationTests and StatisticalTests
|
||||
2.0.3:
|
||||
- bug fixes with CorrelationTests and StatisticalTests
|
||||
- moved glicko2 and trueskill to the metrics subpackage
|
||||
- moved elo to a new metrics subpackage
|
||||
2.0.2:
|
||||
- fixed docs
|
||||
2.0.1:
|
||||
- fixed docs
|
||||
2.0.0:
|
||||
- cleaned up wild card imports with scipy and sklearn
|
||||
- added CorrelationTests class
|
||||
- added StatisticalTests class
|
||||
- added several correlation tests to CorrelationTests
|
||||
- added several statistical tests to StatisticalTests
|
||||
1.13.9:
|
||||
- moved elo, glicko2, trueskill functions under class Metrics
|
||||
1.13.8:
|
||||
- moved Glicko2 to a seperate package
|
||||
1.13.7:
|
||||
- fixed bug with trueskill
|
||||
1.13.6:
|
||||
- cleaned up imports
|
||||
1.13.5:
|
||||
- cleaned up package
|
||||
1.13.4:
|
||||
- small fixes to regression to improve performance
|
||||
1.13.3:
|
||||
- filtered nans from regression
|
||||
1.13.2:
|
||||
- removed torch requirement, and moved Regression back to regression.py
|
||||
1.13.1:
|
||||
- bug fix with linear regression not returning a proper value
|
||||
- cleaned up regression
|
||||
- fixed bug with polynomial regressions
|
||||
1.13.0:
|
||||
- fixed all regressions to now properly work
|
||||
1.12.6:
|
||||
- fixed bg with a division by zero in histo_analysis
|
||||
1.12.5:
|
||||
- fixed numba issues by removing numba from elo, glicko2 and trueskill
|
||||
1.12.4:
|
||||
- renamed gliko to glicko
|
||||
1.12.3:
|
||||
- removed depreciated code
|
||||
1.12.2:
|
||||
- removed team first time trueskill instantiation in favor of integration in superscript.py
|
||||
1.12.1:
|
||||
- improved readibility of regression outputs by stripping tensor data
|
||||
- used map with lambda to acheive the improved readibility
|
||||
- lost numba jit support with regression, and generated_jit hangs at execution
|
||||
- TODO: reimplement correct numba integration in regression
|
||||
1.12.0:
|
||||
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
||||
1.11.010:
|
||||
- alphabeticaly ordered import lists
|
||||
1.11.9:
|
||||
- bug fixes
|
||||
1.11.8:
|
||||
- bug fixes
|
||||
1.11.7:
|
||||
- bug fixes
|
||||
1.11.6:
|
||||
- tested min and max
|
||||
- bug fixes
|
||||
1.11.5:
|
||||
- added min and max in basic_stats
|
||||
1.11.4:
|
||||
- bug fixes
|
||||
1.11.3:
|
||||
- bug fixes
|
||||
1.11.2:
|
||||
- consolidated metrics
|
||||
- fixed __all__
|
||||
1.11.1:
|
||||
- added test/train split to RandomForestClassifier and RandomForestRegressor
|
||||
1.11.0:
|
||||
- added RandomForestClassifier and RandomForestRegressor
|
||||
- note: untested
|
||||
1.10.0:
|
||||
- added numba.jit to remaining functions
|
||||
1.9.2:
|
||||
- kernelized PCA and KNN
|
||||
1.9.1:
|
||||
- fixed bugs with SVM and NaiveBayes
|
||||
1.9.0:
|
||||
- added SVM class, subclasses, and functions
|
||||
- note: untested
|
||||
1.8.0:
|
||||
- added NaiveBayes classification engine
|
||||
- note: untested
|
||||
1.7.0:
|
||||
- added knn()
|
||||
- added confusion matrix to decisiontree()
|
||||
1.6.2:
|
||||
- changed layout of __changelog to be vscode friendly
|
||||
1.6.1:
|
||||
- added additional hyperparameters to decisiontree()
|
||||
1.6.0:
|
||||
- fixed __version__
|
||||
- fixed __all__ order
|
||||
- added decisiontree()
|
||||
1.5.3:
|
||||
- added pca
|
||||
1.5.2:
|
||||
- reduced import list
|
||||
- added kmeans clustering engine
|
||||
1.5.1:
|
||||
- simplified regression by using .to(device)
|
||||
1.5.0:
|
||||
- added polynomial regression to regression(); untested
|
||||
1.4.0:
|
||||
- added trueskill()
|
||||
1.3.2:
|
||||
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
|
||||
1.3.1:
|
||||
- changed glicko2() to return tuple instead of array
|
||||
1.3.0:
|
||||
- added glicko2_engine class and glicko()
|
||||
- verified glicko2() accuracy
|
||||
1.2.3:
|
||||
- fixed elo()
|
||||
1.2.2:
|
||||
- added elo()
|
||||
- elo() has bugs to be fixed
|
||||
1.2.1:
|
||||
- readded regrression import
|
||||
1.2.0:
|
||||
- integrated regression.py as regression class
|
||||
- removed regression import
|
||||
- fixed metadata for regression class
|
||||
- fixed metadata for analysis class
|
||||
1.1.1:
|
||||
- regression_engine() bug fixes, now actaully regresses
|
||||
1.1.0:
|
||||
- added regression_engine()
|
||||
- added all regressions except polynomial
|
||||
1.0.7:
|
||||
- updated _init_device()
|
||||
1.0.6:
|
||||
- removed useless try statements
|
||||
1.0.5:
|
||||
- removed impossible outcomes
|
||||
1.0.4:
|
||||
- added performance metrics (r^2, mse, rms)
|
||||
1.0.3:
|
||||
- resolved nopython mode for mean, median, stdev, variance
|
||||
1.0.2:
|
||||
- snapped (removed) majority of uneeded imports
|
||||
- forced object mode (bad) on all jit
|
||||
- TODO: stop numba complaining about not being able to compile in nopython mode
|
||||
1.0.1:
|
||||
- removed from sklearn import * to resolve uneeded wildcard imports
|
||||
1.0.0:
|
||||
- removed c_entities,nc_entities,obstacles,objectives from __all__
|
||||
- applied numba.jit to all functions
|
||||
- depreciated and removed stdev_z_split
|
||||
- cleaned up histo_analysis to include numpy and numba.jit optimizations
|
||||
- depreciated and removed all regression functions in favor of future pytorch optimizer
|
||||
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
|
||||
- optimized z_normalize using sklearn.preprocessing.normalize
|
||||
- TODO: implement kernel/function based pytorch regression optimizer
|
||||
0.9.0:
|
||||
- refactored
|
||||
- numpyed everything
|
||||
- removed stats in favor of numpy functions
|
||||
0.8.5:
|
||||
- minor fixes
|
||||
0.8.4:
|
||||
- removed a few unused dependencies
|
||||
0.8.3:
|
||||
- added p_value function
|
||||
0.8.2:
|
||||
- updated __all__ correctly to contain changes made in v 0.8.0 and v 0.8.1
|
||||
0.8.1:
|
||||
- refactors
|
||||
- bugfixes
|
||||
0.8.0:
|
||||
- depreciated histo_analysis_old
|
||||
- depreciated debug
|
||||
- altered basic_analysis to take array data instead of filepath
|
||||
- refactor
|
||||
- optimization
|
||||
0.7.2:
|
||||
- bug fixes
|
||||
0.7.1:
|
||||
- bug fixes
|
||||
0.7.0:
|
||||
- added tanh_regression (logistical regression)
|
||||
- bug fixes
|
||||
0.6.5:
|
||||
- added z_normalize function to normalize dataset
|
||||
- bug fixes
|
||||
0.6.4:
|
||||
- bug fixes
|
||||
0.6.3:
|
||||
- bug fixes
|
||||
0.6.2:
|
||||
- bug fixes
|
||||
0.6.1:
|
||||
- corrected __all__ to contain all of the functions
|
||||
0.6.0:
|
||||
- added calc_overfit, which calculates two measures of overfit, error and performance
|
||||
- added calculating overfit to optimize_regression
|
||||
0.5.0:
|
||||
- added optimize_regression function, which is a sample function to find the optimal regressions
|
||||
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
|
||||
- planned addition: overfit detection in the optimize_regression function
|
||||
0.4.2:
|
||||
- added __changelog__
|
||||
- updated debug function with log and exponential regressions
|
||||
0.4.1:
|
||||
- added log regressions
|
||||
- added exponential regressions
|
||||
- added log_regression and exp_regression to __all__
|
||||
0.3.8:
|
||||
- added debug function to further consolidate functions
|
||||
0.3.7:
|
||||
- added builtin benchmark function
|
||||
- added builtin random (linear) data generation function
|
||||
- added device initialization (_init_device)
|
||||
0.3.6:
|
||||
- reorganized the imports list to be in alphabetical order
|
||||
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
|
||||
0.3.5:
|
||||
- major bug fixes
|
||||
- updated historical analysis
|
||||
- depreciated old historical analysis
|
||||
0.3.4:
|
||||
- added __version__, __author__, __all__
|
||||
- added polynomial regression
|
||||
- added root mean squared function
|
||||
- added r squared function
|
||||
0.3.3:
|
||||
- bug fixes
|
||||
- added c_entities
|
||||
0.3.2:
|
||||
- bug fixes
|
||||
- added nc_entities, obstacles, objectives
|
||||
- consolidated statistics.py to analysis.py
|
||||
0.3.1:
|
||||
- compiled 1d, column, and row basic stats into basic stats function
|
||||
0.3.0:
|
||||
- added historical analysis function
|
||||
0.2.x:
|
||||
- added z score test
|
||||
0.1.x:
|
||||
- major bug fixes
|
||||
0.0.x:
|
||||
- added loading csv
|
||||
- added 1d, column, row basic stats
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'load_csv',
|
||||
'basic_stats',
|
||||
'z_score',
|
||||
'z_normalize',
|
||||
'histo_analysis',
|
||||
'regression',
|
||||
'Metric',
|
||||
'RegressionMetric',
|
||||
'ClassificationMetric',
|
||||
'kmeans',
|
||||
'pca',
|
||||
'decisiontree',
|
||||
'KNN',
|
||||
'NaiveBayes',
|
||||
'SVM',
|
||||
'RandomForrest',
|
||||
'CorrelationTest',
|
||||
'StatisticalTest',
|
||||
'Array',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
|
||||
# now back to your regularly scheduled programming:
|
||||
|
||||
# imports (now in alphabetical order! v 0.3.006):
|
||||
|
||||
import csv
|
||||
from tra_analysis.metrics import elo as Elo
|
||||
from tra_analysis.metrics import glicko2 as Glicko2
|
||||
import math
|
||||
import numpy as np
|
||||
import scipy
|
||||
from scipy import optimize, stats
|
||||
import sklearn
|
||||
from sklearn import preprocessing, pipeline, linear_model, metrics, cluster, decomposition, tree, neighbors, naive_bayes, svm, model_selection, ensemble
|
||||
from tra_analysis.metrics import trueskill as Trueskill
|
||||
import warnings
|
||||
|
||||
# import submodules
|
||||
|
||||
from .Array import Array
|
||||
from .ClassificationMetric import ClassificationMetric
|
||||
from .CorrelationTest_obj import CorrelationTest
|
||||
from .KNN_obj import KNN
|
||||
from .NaiveBayes_obj import NaiveBayes
|
||||
from .RandomForest_obj import RandomForest
|
||||
from .RegressionMetric import RegressionMetric
|
||||
from .Sort_obj import Sort
|
||||
from .StatisticalTest_obj import StatisticalTest
|
||||
from . import SVM
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = np.array(list(csv.reader(csvfile)))
|
||||
csvfile.close()
|
||||
return file_array
|
||||
|
||||
# expects 1d array
|
||||
def basic_stats(data):
|
||||
|
||||
data_t = np.array(data).astype(float)
|
||||
|
||||
_mean = mean(data_t)
|
||||
_median = median(data_t)
|
||||
_stdev = stdev(data_t)
|
||||
_variance = variance(data_t)
|
||||
_min = npmin(data_t)
|
||||
_max = npmax(data_t)
|
||||
|
||||
return {"mean": _mean, "median": _median, "standard-deviation": _stdev, "variance": _variance, "minimum": _min, "maximum": _max}
|
||||
|
||||
# returns z score with inputs of point, mean and standard deviation of spread
|
||||
def z_score(point, mean, stdev):
|
||||
score = (point - mean) / stdev
|
||||
|
||||
return score
|
||||
|
||||
# expects 2d array, normalizes across all axes
|
||||
def z_normalize(array, *args):
|
||||
|
||||
array = np.array(array)
|
||||
for arg in args:
|
||||
array = sklearn.preprocessing.normalize(array, axis = arg)
|
||||
|
||||
return array
|
||||
|
||||
# expects 2d array of [x,y]
|
||||
def histo_analysis(hist_data):
|
||||
|
||||
if len(hist_data[0]) > 2:
|
||||
|
||||
hist_data = np.array(hist_data)
|
||||
derivative = np.array(len(hist_data) - 1, dtype = float)
|
||||
t = np.diff(hist_data)
|
||||
derivative = t[1] / t[0]
|
||||
np.sort(derivative)
|
||||
|
||||
return {"mean": basic_stats(derivative)["mean"], "deviation": basic_stats(derivative)["standard-deviation"]}
|
||||
|
||||
else:
|
||||
|
||||
return None
|
||||
|
||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
regressions = {}
|
||||
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
||||
try:
|
||||
|
||||
def lin(x, a, b):
|
||||
|
||||
return a * x + b
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(lin, X, y)
|
||||
|
||||
coeffs = popt.flatten().tolist()
|
||||
regressions["lin"] = (str(coeffs[0]) + "*x+" + str(coeffs[1]))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def log(x, a, b, c, d):
|
||||
|
||||
return a * np.log(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(log, X, y)
|
||||
|
||||
coeffs = popt.flatten().tolist()
|
||||
regressions["log"] = (str(coeffs[0]) + "*log(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def exp(x, a, b, c, d):
|
||||
|
||||
return a * np.exp(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(exp, X, y)
|
||||
|
||||
coeffs = popt.flatten().tolist()
|
||||
regressions["exp"] = (str(coeffs[0]) + "*e^(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||
|
||||
inputs = np.array([inputs])
|
||||
outputs = np.array([outputs])
|
||||
|
||||
plys = {}
|
||||
limit = len(outputs[0])
|
||||
|
||||
for i in range(2, limit):
|
||||
|
||||
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
|
||||
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
|
||||
model = model.fit(np.rot90(inputs), np.rot90(outputs))
|
||||
|
||||
params = model.steps[1][1].intercept_.tolist()
|
||||
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
|
||||
params = params.flatten().tolist()
|
||||
|
||||
temp = ""
|
||||
counter = 0
|
||||
for param in params:
|
||||
temp += "(" + str(param) + "*x^" + str(counter) + ")"
|
||||
counter += 1
|
||||
plys["x^" + str(i)] = (temp)
|
||||
|
||||
regressions["ply"] = (plys)
|
||||
|
||||
if 'sig' in args: # formula: a tanh (b(x + c)) + d
|
||||
|
||||
try:
|
||||
|
||||
def sig(x, a, b, c, d):
|
||||
|
||||
return a * np.tanh(b*(x + c)) + d
|
||||
|
||||
popt, pcov = scipy.optimize.curve_fit(sig, X, y)
|
||||
|
||||
coeffs = popt.flatten().tolist()
|
||||
regressions["sig"] = (str(coeffs[0]) + "*tanh(" + str(coeffs[1]) + "*(x+" + str(coeffs[2]) + "))+" + str(coeffs[3]))
|
||||
|
||||
except Exception as e:
|
||||
|
||||
pass
|
||||
|
||||
return regressions
|
||||
|
||||
class Metric:
|
||||
|
||||
def elo(self, starting_score, opposing_score, observed, N, K):
|
||||
|
||||
return Elo.calculate(starting_score, opposing_score, observed, N, K)
|
||||
|
||||
def glicko2(self, starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations):
|
||||
|
||||
player = Glicko2.Glicko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
|
||||
|
||||
player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations)
|
||||
|
||||
return (player.rating, player.rd, player.vol)
|
||||
|
||||
def trueskill(self, teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]]
|
||||
|
||||
team_ratings = []
|
||||
|
||||
for team in teams_data:
|
||||
team_temp = ()
|
||||
for player in team:
|
||||
player = Trueskill.Rating(player[0], player[1])
|
||||
team_temp = team_temp + (player,)
|
||||
team_ratings.append(team_temp)
|
||||
|
||||
return Trueskill.rate(team_ratings, ranks=observations)
|
||||
|
||||
def mean(data):
|
||||
|
||||
return np.mean(data)
|
||||
|
||||
def median(data):
|
||||
|
||||
return np.median(data)
|
||||
|
||||
def stdev(data):
|
||||
|
||||
return np.std(data)
|
||||
|
||||
def variance(data):
|
||||
|
||||
return np.var(data)
|
||||
|
||||
def npmin(data):
|
||||
|
||||
return np.amin(data)
|
||||
|
||||
def npmax(data):
|
||||
|
||||
return np.amax(data)
|
||||
|
||||
def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"):
|
||||
|
||||
kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm)
|
||||
kernel.fit(data)
|
||||
predictions = kernel.predict(data)
|
||||
centers = kernel.cluster_centers_
|
||||
|
||||
return centers, predictions
|
||||
|
||||
def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None):
|
||||
|
||||
kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state)
|
||||
|
||||
return kernel.fit_transform(data)
|
||||
|
||||
def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||
model = model.fit(data_train,labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
metrics = ClassificationMetric(predictions, labels_test)
|
||||
|
||||
return model, metrics
|
152
analysis-master/tra_analysis/Array.py
Normal file
152
analysis-master/tra_analysis/Array.py
Normal file
@ -0,0 +1,152 @@
|
||||
# Titan Robotics Team 2022: Array submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import Array'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- ported analysis.Array() here
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
class Array(): # tests on nd arrays independent of basic_stats
|
||||
|
||||
def __init__(self, narray):
|
||||
|
||||
self.array = np.array(narray)
|
||||
|
||||
def __str__(self):
|
||||
|
||||
return str(self.array)
|
||||
|
||||
def elementwise_mean(self, axis = 0): # expects arrays that are size normalized
|
||||
|
||||
return np.mean(self.array, axis = axis)
|
||||
|
||||
def elementwise_median(self, axis = 0):
|
||||
|
||||
return np.median(self.array, axis = axis)
|
||||
|
||||
def elementwise_stdev(self, axis = 0):
|
||||
|
||||
return np.std(self.array, axis = axis)
|
||||
|
||||
def elementwise_variance(self, axis = 0):
|
||||
|
||||
return np.var(self.array, axis = axis)
|
||||
|
||||
def elementwise_npmin(self, axis = 0):
|
||||
return np.amin(self.array, axis = axis)
|
||||
|
||||
|
||||
def elementwise_npmax(self, axis = 0):
|
||||
return np.amax(self.array, axis = axis)
|
||||
|
||||
def elementwise_stats(self, axis = 0):
|
||||
|
||||
_mean = self.elementwise_mean(axis = axis)
|
||||
_median = self.elementwise_median(axis = axis)
|
||||
_stdev = self.elementwise_stdev(axis = axis)
|
||||
_variance = self.elementwise_variance(axis = axis)
|
||||
_min = self.elementwise_npmin(axis = axis)
|
||||
_max = self.elementwise_npmax(axis = axis)
|
||||
|
||||
return _mean, _median, _stdev, _variance, _min, _max
|
||||
|
||||
def __getitem__(self, key):
|
||||
|
||||
return self.array[key]
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
|
||||
self.array[key] == value
|
||||
|
||||
def normalize(self, array):
|
||||
|
||||
a = np.atleast_1d(np.linalg.norm(array))
|
||||
a[a==0] = 1
|
||||
return array / np.expand_dims(a, -1)
|
||||
|
||||
def __add__(self, other):
|
||||
|
||||
return self.array + other.array
|
||||
|
||||
def __sub__(self, other):
|
||||
|
||||
return self.array - other.array
|
||||
|
||||
def __neg__(self):
|
||||
|
||||
return -self.array
|
||||
|
||||
def __abs__(self):
|
||||
|
||||
return abs(self.array)
|
||||
|
||||
def __invert__(self):
|
||||
|
||||
return 1/self.array
|
||||
|
||||
def __mul__(self, other):
|
||||
|
||||
return self.array.dot(other.array)
|
||||
|
||||
def __rmul__(self, other):
|
||||
|
||||
return self.array.dot(other.array)
|
||||
|
||||
def cross(self, other):
|
||||
|
||||
return np.cross(self.array, other.array)
|
||||
|
||||
def sort(self, array): # depreciated
|
||||
warnings.warn("Array.sort has been depreciated in favor of Sort")
|
||||
array_length = len(array)
|
||||
if array_length <= 1:
|
||||
return array
|
||||
middle_index = int(array_length / 2)
|
||||
left = array[0:middle_index]
|
||||
right = array[middle_index:]
|
||||
left = self.sort(left)
|
||||
right = self.sort(right)
|
||||
return self.__merge(left, right)
|
||||
|
||||
|
||||
def __merge(self, left, right):
|
||||
sorted_list = []
|
||||
left = left[:]
|
||||
right = right[:]
|
||||
while len(left) > 0 or len(right) > 0:
|
||||
if len(left) > 0 and len(right) > 0:
|
||||
if left[0] <= right[0]:
|
||||
sorted_list.append(left.pop(0))
|
||||
else:
|
||||
sorted_list.append(right.pop(0))
|
||||
elif len(left) > 0:
|
||||
sorted_list.append(left.pop(0))
|
||||
elif len(right) > 0:
|
||||
sorted_list.append(right.pop(0))
|
||||
return sorted_list
|
||||
|
||||
def search(self, arr, x):
|
||||
return self.__search(arr, 0, len(arr) - 1, x)
|
||||
|
||||
def __search(self, arr, low, high, x):
|
||||
if high >= low:
|
||||
mid = (high + low) // 2
|
||||
if arr[mid] == x:
|
||||
return mid
|
||||
elif arr[mid] > x:
|
||||
return binary_search(arr, low, mid - 1, x)
|
||||
else:
|
||||
return binary_search(arr, mid + 1, high, x)
|
||||
else:
|
||||
return -1
|
36
analysis-master/tra_analysis/ClassificationMetric.py
Normal file
36
analysis-master/tra_analysis/ClassificationMetric.py
Normal file
@ -0,0 +1,36 @@
|
||||
# Titan Robotics Team 2022: ClassificationMetric submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import ClassificationMetric'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- ported analysis.ClassificationMetric() here
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import metrics
|
||||
|
||||
class ClassificationMetric():
|
||||
|
||||
def __new__(cls, predictions, targets):
|
||||
|
||||
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
|
||||
|
||||
def cm(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.confusion_matrix(targets, predictions)
|
||||
|
||||
def cr(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.classification_report(targets, predictions)
|
58
analysis-master/tra_analysis/CorrelationTest.py
Normal file
58
analysis-master/tra_analysis/CorrelationTest.py
Normal file
@ -0,0 +1,58 @@
|
||||
# Titan Robotics Team 2022: CorrelationTest submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import CorrelationTest'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- ported analysis.CorrelationTest() here
|
||||
- removed classness
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
]
|
||||
|
||||
import scipy
|
||||
from scipy import stats
|
||||
|
||||
def anova_oneway(*args): #expects arrays of samples
|
||||
|
||||
results = scipy.stats.f_oneway(*args)
|
||||
return {"f-value": results[0], "p-value": results[1]}
|
||||
|
||||
def pearson(x, y):
|
||||
|
||||
results = scipy.stats.pearsonr(x, y)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def spearman(a, b = None, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.spearmanr(a, b = b, axis = axis, nan_policy = nan_policy)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def point_biserial(x, y):
|
||||
|
||||
results = scipy.stats.pointbiserialr(x, y)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def kendall(x, y, initial_lexsort = None, nan_policy = 'propagate', method = 'auto'):
|
||||
|
||||
results = scipy.stats.kendalltau(x, y, initial_lexsort = initial_lexsort, nan_policy = nan_policy, method = method)
|
||||
return {"tau": results[0], "p-value": results[1]}
|
||||
|
||||
def kendall_weighted(x, y, rank = True, weigher = None, additive = True):
|
||||
|
||||
results = scipy.stats.weightedtau(x, y, rank = rank, weigher = weigher, additive = additive)
|
||||
return {"tau": results[0], "p-value": results[1]}
|
||||
|
||||
def mgc(x, y, compute_distance = None, reps = 1000, workers = 1, is_twosamp = False, random_state = None):
|
||||
|
||||
results = scipy.stats.multiscale_graphcorr(x, y, compute_distance = compute_distance, reps = reps, workers = workers, is_twosamp = is_twosamp, random_state = random_state)
|
||||
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value
|
41
analysis-master/tra_analysis/CorrelationTest_obj.py
Normal file
41
analysis-master/tra_analysis/CorrelationTest_obj.py
Normal file
@ -0,0 +1,41 @@
|
||||
# Only included for backwards compatibility! Do not update, CorrelationTest is preferred and supported.
|
||||
|
||||
import scipy
|
||||
from scipy import stats
|
||||
|
||||
class CorrelationTest:
|
||||
|
||||
def anova_oneway(self, *args): #expects arrays of samples
|
||||
|
||||
results = scipy.stats.f_oneway(*args)
|
||||
return {"f-value": results[0], "p-value": results[1]}
|
||||
|
||||
def pearson(self, x, y):
|
||||
|
||||
results = scipy.stats.pearsonr(x, y)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def spearman(self, a, b = None, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.spearmanr(a, b = b, axis = axis, nan_policy = nan_policy)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def point_biserial(self, x,y):
|
||||
|
||||
results = scipy.stats.pointbiserialr(x, y)
|
||||
return {"r-value": results[0], "p-value": results[1]}
|
||||
|
||||
def kendall(self, x, y, initial_lexsort = None, nan_policy = 'propagate', method = 'auto'):
|
||||
|
||||
results = scipy.stats.kendalltau(x, y, initial_lexsort = initial_lexsort, nan_policy = nan_policy, method = method)
|
||||
return {"tau": results[0], "p-value": results[1]}
|
||||
|
||||
def kendall_weighted(self, x, y, rank = True, weigher = None, additive = True):
|
||||
|
||||
results = scipy.stats.weightedtau(x, y, rank = rank, weigher = weigher, additive = additive)
|
||||
return {"tau": results[0], "p-value": results[1]}
|
||||
|
||||
def mgc(self, x, y, compute_distance = None, reps = 1000, workers = 1, is_twosamp = False, random_state = None):
|
||||
|
||||
results = scipy.stats.multiscale_graphcorr(x, y, compute_distance = compute_distance, reps = reps, workers = workers, is_twosamp = is_twosamp, random_state = random_state)
|
||||
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value
|
@ -4,10 +4,12 @@
|
||||
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.1"
|
||||
__version__ = "0.0.2"
|
||||
|
||||
# changelog should be viewed using print(analysis.fits.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
0.0.2:
|
||||
- renamed module to Fit
|
||||
0.0.1:
|
||||
- initial release, add circle fitting with LSC
|
||||
"""
|
45
analysis-master/tra_analysis/KNN.py
Normal file
45
analysis-master/tra_analysis/KNN.py
Normal file
@ -0,0 +1,45 @@
|
||||
# Titan Robotics Team 2022: KNN submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import KNN'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- ported analysis.KNN() here
|
||||
- removed classness
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
"James Pan <zpan@imsa.edu>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'knn_classifier',
|
||||
'knn_regressor'
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import model_selection, neighbors
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsClassifier(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def knn_regressor(data, outputs, n_neighbors = 5, test_size = 0.3, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||
model.fit(data_train, outputs_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, RegressionMetric.RegressionMetric(predictions, outputs_test)
|
25
analysis-master/tra_analysis/KNN_obj.py
Normal file
25
analysis-master/tra_analysis/KNN_obj.py
Normal file
@ -0,0 +1,25 @@
|
||||
# Only included for backwards compatibility! Do not update, NaiveBayes is preferred and supported.
|
||||
|
||||
import sklearn
|
||||
from sklearn import model_selection, neighbors
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
class KNN:
|
||||
|
||||
def knn_classifier(self, data, labels, n_neighbors, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsClassifier()
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def knn_regressor(self, data, outputs, n_neighbors, test_size = 0.3, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||||
model.fit(data_train, outputs_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, RegressionMetric(predictions, outputs_test)
|
63
analysis-master/tra_analysis/NaiveBayes.py
Normal file
63
analysis-master/tra_analysis/NaiveBayes.py
Normal file
@ -0,0 +1,63 @@
|
||||
# Titan Robotics Team 2022: NaiveBayes submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- ported analysis.NaiveBayes() here
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'gaussian',
|
||||
'multinomial'
|
||||
'bernoulli',
|
||||
'complement'
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import model_selection, naive_bayes
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def multinomial(data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def bernoulli(data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def complement(data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
43
analysis-master/tra_analysis/NaiveBayes_obj.py
Normal file
43
analysis-master/tra_analysis/NaiveBayes_obj.py
Normal file
@ -0,0 +1,43 @@
|
||||
# Only included for backwards compatibility! Do not update, NaiveBayes is preferred and supported.
|
||||
|
||||
import sklearn
|
||||
from sklearn import model_selection, naive_bayes
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
class NaiveBayes:
|
||||
|
||||
def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
42
analysis-master/tra_analysis/RandomForest.py
Normal file
42
analysis-master/tra_analysis/RandomForest.py
Normal file
@ -0,0 +1,42 @@
|
||||
# Titan Robotics Team 2022: RandomForest submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import RandomForest'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- ported analysis.RandomFores() here
|
||||
- removed classness
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import ensemble, model_selection
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
def random_forest_classifier(data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||
kernel.fit(data_train, labels_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def random_forest_regressor(data, outputs, test_size, n_estimators, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||
kernel.fit(data_train, outputs_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, RegressionMetric.RegressionMetric(predictions, outputs_test)
|
25
analysis-master/tra_analysis/RandomForest_obj.py
Normal file
25
analysis-master/tra_analysis/RandomForest_obj.py
Normal file
@ -0,0 +1,25 @@
|
||||
# Only included for backwards compatibility! Do not update, RandomForest is preferred and supported.
|
||||
|
||||
import sklearn
|
||||
from sklearn import ensemble, model_selection
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
class RandomForest:
|
||||
|
||||
def random_forest_classifier(self, data, labels, test_size, n_estimators, criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||
kernel.fit(data_train, labels_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def random_forest_regressor(self, data, outputs, test_size, n_estimators, criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||
kernel.fit(data_train, outputs_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
return kernel, RegressionMetric(predictions, outputs_test)
|
42
analysis-master/tra_analysis/RegressionMetric.py
Normal file
42
analysis-master/tra_analysis/RegressionMetric.py
Normal file
@ -0,0 +1,42 @@
|
||||
# Titan Robotics Team 2022: RegressionMetric submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import RegressionMetric'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- ported analysis.RegressionMetric() here
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'RegressionMetric'
|
||||
]
|
||||
|
||||
import numpy as np
|
||||
import sklearn
|
||||
from sklearn import metrics
|
||||
|
||||
class RegressionMetric():
|
||||
|
||||
def __new__(cls, predictions, targets):
|
||||
|
||||
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
|
||||
|
||||
def r_squared(self, predictions, targets): # assumes equal size inputs
|
||||
|
||||
return sklearn.metrics.r2_score(targets, predictions)
|
||||
|
||||
def mse(self, predictions, targets):
|
||||
|
||||
return sklearn.metrics.mean_squared_error(targets, predictions)
|
||||
|
||||
def rms(self, predictions, targets):
|
||||
|
||||
return np.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|
80
analysis-master/tra_analysis/SVM.py
Normal file
80
analysis-master/tra_analysis/SVM.py
Normal file
@ -0,0 +1,80 @@
|
||||
# Titan Robotics Team 2022: SVM submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import SVM'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.1"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.1:
|
||||
- removed unessasary self calls
|
||||
- removed classness
|
||||
1.0.0:
|
||||
- ported analysis.SVM() here
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
]
|
||||
|
||||
import sklearn
|
||||
from sklearn import svm
|
||||
from . import ClassificationMetric, RegressionMetric
|
||||
|
||||
class CustomKernel:
|
||||
|
||||
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
||||
|
||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||
|
||||
class StandardKernel:
|
||||
|
||||
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
||||
|
||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||
|
||||
class PrebuiltKernel:
|
||||
|
||||
class Linear:
|
||||
|
||||
def __new__(cls):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'linear')
|
||||
|
||||
class Polynomial:
|
||||
|
||||
def __new__(cls, power, r_bias):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
||||
|
||||
class RBF:
|
||||
|
||||
def __new__(cls, gamma):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
||||
|
||||
class Sigmoid:
|
||||
|
||||
def __new__(cls, r_bias):
|
||||
|
||||
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
||||
|
||||
def fit(kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs
|
||||
|
||||
return kernel.fit(train_data, train_outputs)
|
||||
|
||||
def eval_classification(kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
|
||||
return ClassificationMetric(predictions, test_outputs)
|
||||
|
||||
def eval_regression(kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
|
||||
return RegressionMetric(predictions, test_outputs)
|
411
analysis-master/tra_analysis/Sort.py
Normal file
411
analysis-master/tra_analysis/Sort.py
Normal file
@ -0,0 +1,411 @@
|
||||
# Titan Robotics Team 2022: Sort submodule
|
||||
# Written by Arthur Lu and James Pan
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import Sort'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- ported analysis.Sort() here
|
||||
- removed classness
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
"James Pan <zpan@imsa.edu>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
]
|
||||
|
||||
import numpy as np
|
||||
|
||||
def quicksort(a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
less = []
|
||||
equal = []
|
||||
greater = []
|
||||
|
||||
if len(array) > 1:
|
||||
pivot = array[0]
|
||||
for x in array:
|
||||
if x < pivot:
|
||||
less.append(x)
|
||||
elif x == pivot:
|
||||
equal.append(x)
|
||||
elif x > pivot:
|
||||
greater.append(x)
|
||||
return sort(less)+equal+sort(greater)
|
||||
else:
|
||||
return array
|
||||
|
||||
return np.array(sort(a))
|
||||
|
||||
def mergesort(a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
|
||||
if len(array) >1:
|
||||
middle = len(array) // 2
|
||||
L = array[:middle]
|
||||
R = array[middle:]
|
||||
|
||||
sort(L)
|
||||
sort(R)
|
||||
|
||||
i = j = k = 0
|
||||
|
||||
while i < len(L) and j < len(R):
|
||||
if L[i] < R[j]:
|
||||
array[k] = L[i]
|
||||
i+= 1
|
||||
else:
|
||||
array[k] = R[j]
|
||||
j+= 1
|
||||
k+= 1
|
||||
|
||||
while i < len(L):
|
||||
array[k] = L[i]
|
||||
i+= 1
|
||||
k+= 1
|
||||
|
||||
while j < len(R):
|
||||
array[k] = R[j]
|
||||
j+= 1
|
||||
k+= 1
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def introsort(a):
|
||||
|
||||
def sort(array, start, end, maxdepth):
|
||||
|
||||
array = array
|
||||
|
||||
if end - start <= 1:
|
||||
return
|
||||
elif maxdepth == 0:
|
||||
heapsort(array, start, end)
|
||||
else:
|
||||
p = partition(array, start, end)
|
||||
sort(array, start, p + 1, maxdepth - 1)
|
||||
sort(array, p + 1, end, maxdepth - 1)
|
||||
|
||||
return array
|
||||
|
||||
def partition(array, start, end):
|
||||
pivot = array[start]
|
||||
i = start - 1
|
||||
j = end
|
||||
|
||||
while True:
|
||||
i = i + 1
|
||||
while array[i] < pivot:
|
||||
i = i + 1
|
||||
j = j - 1
|
||||
while array[j] > pivot:
|
||||
j = j - 1
|
||||
|
||||
if i >= j:
|
||||
return j
|
||||
|
||||
swap(array, i, j)
|
||||
|
||||
def swap(array, i, j):
|
||||
array[i], array[j] = array[j], array[i]
|
||||
|
||||
def heapsort(array, start, end):
|
||||
build_max_heap(array, start, end)
|
||||
for i in range(end - 1, start, -1):
|
||||
swap(array, start, i)
|
||||
max_heapify(array, index=0, start=start, end=i)
|
||||
|
||||
def build_max_heap(array, start, end):
|
||||
def parent(i):
|
||||
return (i - 1)//2
|
||||
length = end - start
|
||||
index = parent(length - 1)
|
||||
while index >= 0:
|
||||
max_heapify(array, index, start, end)
|
||||
index = index - 1
|
||||
|
||||
def max_heapify(array, index, start, end):
|
||||
def left(i):
|
||||
return 2*i + 1
|
||||
def right(i):
|
||||
return 2*i + 2
|
||||
|
||||
size = end - start
|
||||
l = left(index)
|
||||
r = right(index)
|
||||
if (l < size and array[start + l] > array[start + index]):
|
||||
largest = l
|
||||
else:
|
||||
largest = index
|
||||
if (r < size and array[start + r] > array[start + largest]):
|
||||
largest = r
|
||||
if largest != index:
|
||||
swap(array, start + largest, start + index)
|
||||
max_heapify(array, largest, start, end)
|
||||
|
||||
maxdepth = (len(a).bit_length() - 1)*2
|
||||
|
||||
return sort(a, 0, len(a), maxdepth)
|
||||
|
||||
def heapsort(a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
|
||||
n = len(array)
|
||||
|
||||
for i in range(n//2 - 1, -1, -1):
|
||||
heapify(array, n, i)
|
||||
|
||||
for i in range(n-1, 0, -1):
|
||||
array[i], array[0] = array[0], array[i]
|
||||
heapify(array, i, 0)
|
||||
|
||||
return array
|
||||
|
||||
def heapify(array, n, i):
|
||||
|
||||
array = array
|
||||
|
||||
largest = i
|
||||
l = 2 * i + 1
|
||||
r = 2 * i + 2
|
||||
|
||||
if l < n and array[i] < array[l]:
|
||||
largest = l
|
||||
|
||||
if r < n and array[largest] < array[r]:
|
||||
largest = r
|
||||
|
||||
if largest != i:
|
||||
array[i],array[largest] = array[largest],array[i]
|
||||
heapify(array, n, largest)
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def insertionsort(a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
|
||||
for i in range(1, len(array)):
|
||||
|
||||
key = array[i]
|
||||
|
||||
j = i-1
|
||||
while j >=0 and key < array[j] :
|
||||
array[j+1] = array[j]
|
||||
j -= 1
|
||||
array[j+1] = key
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def timsort(a, block = 32):
|
||||
|
||||
BLOCK = block
|
||||
|
||||
def sort(array, n):
|
||||
|
||||
array = array
|
||||
|
||||
for i in range(0, n, BLOCK):
|
||||
insertionsort(array, i, min((i+31), (n-1)))
|
||||
|
||||
size = BLOCK
|
||||
while size < n:
|
||||
|
||||
for left in range(0, n, 2*size):
|
||||
|
||||
mid = left + size - 1
|
||||
right = min((left + 2*size - 1), (n-1))
|
||||
merge(array, left, mid, right)
|
||||
|
||||
size = 2*size
|
||||
|
||||
return array
|
||||
|
||||
def insertionsort(array, left, right):
|
||||
|
||||
array = array
|
||||
|
||||
for i in range(left + 1, right+1):
|
||||
|
||||
temp = array[i]
|
||||
j = i - 1
|
||||
while j >= left and array[j] > temp :
|
||||
|
||||
array[j+1] = array[j]
|
||||
j -= 1
|
||||
|
||||
array[j+1] = temp
|
||||
|
||||
return array
|
||||
|
||||
|
||||
def merge(array, l, m, r):
|
||||
|
||||
len1, len2 = m - l + 1, r - m
|
||||
left, right = [], []
|
||||
for i in range(0, len1):
|
||||
left.append(array[l + i])
|
||||
for i in range(0, len2):
|
||||
right.append(array[m + 1 + i])
|
||||
|
||||
i, j, k = 0, 0, l
|
||||
|
||||
while i < len1 and j < len2:
|
||||
|
||||
if left[i] <= right[j]:
|
||||
array[k] = left[i]
|
||||
i += 1
|
||||
|
||||
else:
|
||||
array[k] = right[j]
|
||||
j += 1
|
||||
|
||||
k += 1
|
||||
|
||||
while i < len1:
|
||||
|
||||
array[k] = left[i]
|
||||
k += 1
|
||||
i += 1
|
||||
|
||||
while j < len2:
|
||||
array[k] = right[j]
|
||||
k += 1
|
||||
j += 1
|
||||
|
||||
return sort(a, len(a))
|
||||
|
||||
def selectionsort(a):
|
||||
array = a
|
||||
for i in range(len(array)):
|
||||
min_idx = i
|
||||
for j in range(i+1, len(array)):
|
||||
if array[min_idx] > array[j]:
|
||||
min_idx = j
|
||||
array[i], array[min_idx] = array[min_idx], array[i]
|
||||
return array
|
||||
|
||||
def shellsort(a):
|
||||
array = a
|
||||
n = len(array)
|
||||
gap = n//2
|
||||
|
||||
while gap > 0:
|
||||
|
||||
for i in range(gap,n):
|
||||
|
||||
temp = array[i]
|
||||
j = i
|
||||
while j >= gap and array[j-gap] >temp:
|
||||
array[j] = array[j-gap]
|
||||
j -= gap
|
||||
array[j] = temp
|
||||
gap //= 2
|
||||
|
||||
return array
|
||||
|
||||
def bubblesort(a):
|
||||
|
||||
def sort(array):
|
||||
for i, num in enumerate(array):
|
||||
try:
|
||||
if array[i+1] < num:
|
||||
array[i] = array[i+1]
|
||||
array[i+1] = num
|
||||
sort(array)
|
||||
except IndexError:
|
||||
pass
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def cyclesort(a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
writes = 0
|
||||
|
||||
for cycleStart in range(0, len(array) - 1):
|
||||
item = array[cycleStart]
|
||||
|
||||
pos = cycleStart
|
||||
for i in range(cycleStart + 1, len(array)):
|
||||
if array[i] < item:
|
||||
pos += 1
|
||||
|
||||
if pos == cycleStart:
|
||||
continue
|
||||
|
||||
while item == array[pos]:
|
||||
pos += 1
|
||||
array[pos], item = item, array[pos]
|
||||
writes += 1
|
||||
|
||||
while pos != cycleStart:
|
||||
|
||||
pos = cycleStart
|
||||
for i in range(cycleStart + 1, len(array)):
|
||||
if array[i] < item:
|
||||
pos += 1
|
||||
|
||||
while item == array[pos]:
|
||||
pos += 1
|
||||
array[pos], item = item, array[pos]
|
||||
writes += 1
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def cocktailsort(a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
|
||||
n = len(array)
|
||||
swapped = True
|
||||
start = 0
|
||||
end = n-1
|
||||
while (swapped == True):
|
||||
swapped = False
|
||||
for i in range (start, end):
|
||||
if (array[i] > array[i + 1]) :
|
||||
array[i], array[i + 1]= array[i + 1], array[i]
|
||||
swapped = True
|
||||
if (swapped == False):
|
||||
break
|
||||
swapped = False
|
||||
end = end-1
|
||||
for i in range(end-1, start-1, -1):
|
||||
if (array[i] > array[i + 1]):
|
||||
array[i], array[i + 1] = array[i + 1], array[i]
|
||||
swapped = True
|
||||
start = start + 1
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
391
analysis-master/tra_analysis/Sort_obj.py
Normal file
391
analysis-master/tra_analysis/Sort_obj.py
Normal file
@ -0,0 +1,391 @@
|
||||
# Only included for backwards compatibility! Do not update, Sort is preferred and supported.
|
||||
|
||||
class Sort: # if you haven't used a sort, then you've never lived
|
||||
|
||||
def quicksort(self, a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
less = []
|
||||
equal = []
|
||||
greater = []
|
||||
|
||||
if len(array) > 1:
|
||||
pivot = array[0]
|
||||
for x in array:
|
||||
if x < pivot:
|
||||
less.append(x)
|
||||
elif x == pivot:
|
||||
equal.append(x)
|
||||
elif x > pivot:
|
||||
greater.append(x)
|
||||
return sort(less)+equal+sort(greater)
|
||||
else:
|
||||
return array
|
||||
|
||||
return np.array(sort(a))
|
||||
|
||||
def mergesort(self, a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
|
||||
if len(array) >1:
|
||||
middle = len(array) // 2
|
||||
L = array[:middle]
|
||||
R = array[middle:]
|
||||
|
||||
sort(L)
|
||||
sort(R)
|
||||
|
||||
i = j = k = 0
|
||||
|
||||
while i < len(L) and j < len(R):
|
||||
if L[i] < R[j]:
|
||||
array[k] = L[i]
|
||||
i+= 1
|
||||
else:
|
||||
array[k] = R[j]
|
||||
j+= 1
|
||||
k+= 1
|
||||
|
||||
while i < len(L):
|
||||
array[k] = L[i]
|
||||
i+= 1
|
||||
k+= 1
|
||||
|
||||
while j < len(R):
|
||||
array[k] = R[j]
|
||||
j+= 1
|
||||
k+= 1
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def introsort(self, a):
|
||||
|
||||
def sort(array, start, end, maxdepth):
|
||||
|
||||
array = array
|
||||
|
||||
if end - start <= 1:
|
||||
return
|
||||
elif maxdepth == 0:
|
||||
heapsort(array, start, end)
|
||||
else:
|
||||
p = partition(array, start, end)
|
||||
sort(array, start, p + 1, maxdepth - 1)
|
||||
sort(array, p + 1, end, maxdepth - 1)
|
||||
|
||||
return array
|
||||
|
||||
def partition(array, start, end):
|
||||
pivot = array[start]
|
||||
i = start - 1
|
||||
j = end
|
||||
|
||||
while True:
|
||||
i = i + 1
|
||||
while array[i] < pivot:
|
||||
i = i + 1
|
||||
j = j - 1
|
||||
while array[j] > pivot:
|
||||
j = j - 1
|
||||
|
||||
if i >= j:
|
||||
return j
|
||||
|
||||
swap(array, i, j)
|
||||
|
||||
def swap(array, i, j):
|
||||
array[i], array[j] = array[j], array[i]
|
||||
|
||||
def heapsort(array, start, end):
|
||||
build_max_heap(array, start, end)
|
||||
for i in range(end - 1, start, -1):
|
||||
swap(array, start, i)
|
||||
max_heapify(array, index=0, start=start, end=i)
|
||||
|
||||
def build_max_heap(array, start, end):
|
||||
def parent(i):
|
||||
return (i - 1)//2
|
||||
length = end - start
|
||||
index = parent(length - 1)
|
||||
while index >= 0:
|
||||
max_heapify(array, index, start, end)
|
||||
index = index - 1
|
||||
|
||||
def max_heapify(array, index, start, end):
|
||||
def left(i):
|
||||
return 2*i + 1
|
||||
def right(i):
|
||||
return 2*i + 2
|
||||
|
||||
size = end - start
|
||||
l = left(index)
|
||||
r = right(index)
|
||||
if (l < size and array[start + l] > array[start + index]):
|
||||
largest = l
|
||||
else:
|
||||
largest = index
|
||||
if (r < size and array[start + r] > array[start + largest]):
|
||||
largest = r
|
||||
if largest != index:
|
||||
swap(array, start + largest, start + index)
|
||||
max_heapify(array, largest, start, end)
|
||||
|
||||
maxdepth = (len(a).bit_length() - 1)*2
|
||||
|
||||
return sort(a, 0, len(a), maxdepth)
|
||||
|
||||
def heapsort(self, a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
|
||||
n = len(array)
|
||||
|
||||
for i in range(n//2 - 1, -1, -1):
|
||||
heapify(array, n, i)
|
||||
|
||||
for i in range(n-1, 0, -1):
|
||||
array[i], array[0] = array[0], array[i]
|
||||
heapify(array, i, 0)
|
||||
|
||||
return array
|
||||
|
||||
def heapify(array, n, i):
|
||||
|
||||
array = array
|
||||
|
||||
largest = i
|
||||
l = 2 * i + 1
|
||||
r = 2 * i + 2
|
||||
|
||||
if l < n and array[i] < array[l]:
|
||||
largest = l
|
||||
|
||||
if r < n and array[largest] < array[r]:
|
||||
largest = r
|
||||
|
||||
if largest != i:
|
||||
array[i],array[largest] = array[largest],array[i]
|
||||
heapify(array, n, largest)
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def insertionsort(self, a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
|
||||
for i in range(1, len(array)):
|
||||
|
||||
key = array[i]
|
||||
|
||||
j = i-1
|
||||
while j >=0 and key < array[j] :
|
||||
array[j+1] = array[j]
|
||||
j -= 1
|
||||
array[j+1] = key
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def timsort(self, a, block = 32):
|
||||
|
||||
BLOCK = block
|
||||
|
||||
def sort(array, n):
|
||||
|
||||
array = array
|
||||
|
||||
for i in range(0, n, BLOCK):
|
||||
insertionsort(array, i, min((i+31), (n-1)))
|
||||
|
||||
size = BLOCK
|
||||
while size < n:
|
||||
|
||||
for left in range(0, n, 2*size):
|
||||
|
||||
mid = left + size - 1
|
||||
right = min((left + 2*size - 1), (n-1))
|
||||
merge(array, left, mid, right)
|
||||
|
||||
size = 2*size
|
||||
|
||||
return array
|
||||
|
||||
def insertionsort(array, left, right):
|
||||
|
||||
array = array
|
||||
|
||||
for i in range(left + 1, right+1):
|
||||
|
||||
temp = array[i]
|
||||
j = i - 1
|
||||
while j >= left and array[j] > temp :
|
||||
|
||||
array[j+1] = array[j]
|
||||
j -= 1
|
||||
|
||||
array[j+1] = temp
|
||||
|
||||
return array
|
||||
|
||||
|
||||
def merge(array, l, m, r):
|
||||
|
||||
len1, len2 = m - l + 1, r - m
|
||||
left, right = [], []
|
||||
for i in range(0, len1):
|
||||
left.append(array[l + i])
|
||||
for i in range(0, len2):
|
||||
right.append(array[m + 1 + i])
|
||||
|
||||
i, j, k = 0, 0, l
|
||||
|
||||
while i < len1 and j < len2:
|
||||
|
||||
if left[i] <= right[j]:
|
||||
array[k] = left[i]
|
||||
i += 1
|
||||
|
||||
else:
|
||||
array[k] = right[j]
|
||||
j += 1
|
||||
|
||||
k += 1
|
||||
|
||||
while i < len1:
|
||||
|
||||
array[k] = left[i]
|
||||
k += 1
|
||||
i += 1
|
||||
|
||||
while j < len2:
|
||||
array[k] = right[j]
|
||||
k += 1
|
||||
j += 1
|
||||
|
||||
return sort(a, len(a))
|
||||
|
||||
def selectionsort(self, a):
|
||||
array = a
|
||||
for i in range(len(array)):
|
||||
min_idx = i
|
||||
for j in range(i+1, len(array)):
|
||||
if array[min_idx] > array[j]:
|
||||
min_idx = j
|
||||
array[i], array[min_idx] = array[min_idx], array[i]
|
||||
return array
|
||||
|
||||
def shellsort(self, a):
|
||||
array = a
|
||||
n = len(array)
|
||||
gap = n//2
|
||||
|
||||
while gap > 0:
|
||||
|
||||
for i in range(gap,n):
|
||||
|
||||
temp = array[i]
|
||||
j = i
|
||||
while j >= gap and array[j-gap] >temp:
|
||||
array[j] = array[j-gap]
|
||||
j -= gap
|
||||
array[j] = temp
|
||||
gap //= 2
|
||||
|
||||
return array
|
||||
|
||||
def bubblesort(self, a):
|
||||
|
||||
def sort(array):
|
||||
for i, num in enumerate(array):
|
||||
try:
|
||||
if array[i+1] < num:
|
||||
array[i] = array[i+1]
|
||||
array[i+1] = num
|
||||
sort(array)
|
||||
except IndexError:
|
||||
pass
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def cyclesort(self, a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
writes = 0
|
||||
|
||||
for cycleStart in range(0, len(array) - 1):
|
||||
item = array[cycleStart]
|
||||
|
||||
pos = cycleStart
|
||||
for i in range(cycleStart + 1, len(array)):
|
||||
if array[i] < item:
|
||||
pos += 1
|
||||
|
||||
if pos == cycleStart:
|
||||
continue
|
||||
|
||||
while item == array[pos]:
|
||||
pos += 1
|
||||
array[pos], item = item, array[pos]
|
||||
writes += 1
|
||||
|
||||
while pos != cycleStart:
|
||||
|
||||
pos = cycleStart
|
||||
for i in range(cycleStart + 1, len(array)):
|
||||
if array[i] < item:
|
||||
pos += 1
|
||||
|
||||
while item == array[pos]:
|
||||
pos += 1
|
||||
array[pos], item = item, array[pos]
|
||||
writes += 1
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
||||
|
||||
def cocktailsort(self, a):
|
||||
|
||||
def sort(array):
|
||||
|
||||
array = array
|
||||
|
||||
n = len(array)
|
||||
swapped = True
|
||||
start = 0
|
||||
end = n-1
|
||||
while (swapped == True):
|
||||
swapped = False
|
||||
for i in range (start, end):
|
||||
if (array[i] > array[i + 1]) :
|
||||
array[i], array[i + 1]= array[i + 1], array[i]
|
||||
swapped = True
|
||||
if (swapped == False):
|
||||
break
|
||||
swapped = False
|
||||
end = end-1
|
||||
for i in range(end-1, start-1, -1):
|
||||
if (array[i] > array[i + 1]):
|
||||
array[i], array[i + 1] = array[i + 1], array[i]
|
||||
swapped = True
|
||||
start = start + 1
|
||||
|
||||
return array
|
||||
|
||||
return sort(a)
|
222
analysis-master/tra_analysis/StatisticalTest.py
Normal file
222
analysis-master/tra_analysis/StatisticalTest.py
Normal file
@ -0,0 +1,222 @@
|
||||
# Titan Robotics Team 2022: StatisticalTest submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import StatisticalTest'
|
||||
# setup:
|
||||
|
||||
__version__ = "1.0.1"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.1:
|
||||
- fixed typo in __all__
|
||||
1.0.0:
|
||||
- ported analysis.StatisticalTest() here
|
||||
- removed classness
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
'ttest_onesample',
|
||||
'ttest_independent',
|
||||
'ttest_statistic',
|
||||
'ttest_related',
|
||||
'ks_fitness',
|
||||
'chisquare',
|
||||
'powerdivergence'
|
||||
'ks_twosample',
|
||||
'es_twosample',
|
||||
'mw_rank',
|
||||
'mw_tiecorrection',
|
||||
'rankdata',
|
||||
'wilcoxon_ranksum',
|
||||
'wilcoxon_signedrank',
|
||||
'kw_htest',
|
||||
'friedman_chisquare',
|
||||
'bm_wtest',
|
||||
'combine_pvalues',
|
||||
'jb_fitness',
|
||||
'ab_equality',
|
||||
'bartlett_variance',
|
||||
'levene_variance',
|
||||
'sw_normality',
|
||||
'shapiro',
|
||||
'ad_onesample',
|
||||
'ad_ksample',
|
||||
'binomial',
|
||||
'fk_variance',
|
||||
'mood_mediantest',
|
||||
'mood_equalscale',
|
||||
'skewtest',
|
||||
'kurtosistest',
|
||||
'normaltest'
|
||||
]
|
||||
|
||||
import scipy
|
||||
from scipy import stats
|
||||
|
||||
def ttest_onesample(a, popmean, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.ttest_1samp(a, popmean, axis = axis, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_independent(a, b, equal = True, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_statistic(o1, o2, equal = True):
|
||||
|
||||
results = scipy.stats.ttest_ind_from_stats(o1["mean"], o1["std"], o1["nobs"], o2["mean"], o2["std"], o2["nobs"], equal_var = equal)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_related(a, b, axis = 0, nan_policy='propagate'):
|
||||
|
||||
results = scipy.stats.ttest_rel(a, b, axis = axis, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ks_fitness(rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
|
||||
|
||||
results = scipy.stats.kstest(rvs, cdf, args = args, N = N, alternative = alternative, mode = mode)
|
||||
return {"ks-value": results[0], "p-value": results[1]}
|
||||
|
||||
def chisquare(f_obs, f_exp = None, ddof = None, axis = 0):
|
||||
|
||||
results = scipy.stats.chisquare(f_obs, f_exp = f_exp, ddof = ddof, axis = axis)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def powerdivergence(f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
|
||||
|
||||
results = scipy.stats.power_divergence(f_obs, f_exp = f_exp, ddof = ddof, axis = axis, lambda_ = lambda_)
|
||||
return {"powerdivergence-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ks_twosample(x, y, alternative = 'two_sided', mode = 'auto'):
|
||||
|
||||
results = scipy.stats.ks_2samp(x, y, alternative = alternative, mode = mode)
|
||||
return {"ks-value": results[0], "p-value": results[1]}
|
||||
|
||||
def es_twosample(x, y, t = (0.4, 0.8)):
|
||||
|
||||
results = scipy.stats.epps_singleton_2samp(x, y, t = t)
|
||||
return {"es-value": results[0], "p-value": results[1]}
|
||||
|
||||
def mw_rank(x, y, use_continuity = True, alternative = None):
|
||||
|
||||
results = scipy.stats.mannwhitneyu(x, y, use_continuity = use_continuity, alternative = alternative)
|
||||
return {"u-value": results[0], "p-value": results[1]}
|
||||
|
||||
def mw_tiecorrection(rank_values):
|
||||
|
||||
results = scipy.stats.tiecorrect(rank_values)
|
||||
return {"correction-factor": results}
|
||||
|
||||
def rankdata(a, method = 'average'):
|
||||
|
||||
results = scipy.stats.rankdata(a, method = method)
|
||||
return results
|
||||
|
||||
def wilcoxon_ranksum(a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
|
||||
|
||||
results = scipy.stats.ranksums(a, b)
|
||||
return {"u-value": results[0], "p-value": results[1]}
|
||||
|
||||
def wilcoxon_signedrank(x, y = None, zero_method = 'wilcox', correction = False, alternative = 'two-sided'):
|
||||
|
||||
results = scipy.stats.wilcoxon(x, y = y, zero_method = zero_method, correction = correction, alternative = alternative)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def kw_htest(*args, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.kruskal(*args, nan_policy = nan_policy)
|
||||
return {"h-value": results[0], "p-value": results[1]}
|
||||
|
||||
def friedman_chisquare(*args):
|
||||
|
||||
results = scipy.stats.friedmanchisquare(*args)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bm_wtest(x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def combine_pvalues(pvalues, method = 'fisher', weights = None):
|
||||
|
||||
results = scipy.stats.combine_pvalues(pvalues, method = method, weights = weights)
|
||||
return {"combined-statistic": results[0], "p-value": results[1]}
|
||||
|
||||
def jb_fitness(x):
|
||||
|
||||
results = scipy.stats.jarque_bera(x)
|
||||
return {"jb-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ab_equality(x, y):
|
||||
|
||||
results = scipy.stats.ansari(x, y)
|
||||
return {"ab-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bartlett_variance(*args):
|
||||
|
||||
results = scipy.stats.bartlett(*args)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def levene_variance(*args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def sw_normality(x):
|
||||
|
||||
results = scipy.stats.shapiro(x)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def shapiro(x):
|
||||
|
||||
return "destroyed by facts and logic"
|
||||
|
||||
def ad_onesample(x, dist = 'norm'):
|
||||
|
||||
results = scipy.stats.anderson(x, dist = dist)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def ad_ksample(samples, midrank = True):
|
||||
|
||||
results = scipy.stats.anderson_ksamp(samples, midrank = midrank)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def binomial(x, n = None, p = 0.5, alternative = 'two-sided'):
|
||||
|
||||
results = scipy.stats.binom_test(x, n = n, p = p, alternative = alternative)
|
||||
return {"p-value": results}
|
||||
|
||||
def fk_variance(*args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
|
||||
|
||||
def mood_mediantest(*args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
|
||||
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
|
||||
|
||||
def mood_equalscale(x, y, axis = 0):
|
||||
|
||||
results = scipy.stats.mood(x, y, axis = axis)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def skewtest(a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.skewtest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def kurtosistest(a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.kurtosistest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def normaltest(a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.normaltest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
170
analysis-master/tra_analysis/StatisticalTest_obj.py
Normal file
170
analysis-master/tra_analysis/StatisticalTest_obj.py
Normal file
@ -0,0 +1,170 @@
|
||||
# Only included for backwards compatibility! Do not update, StatisticalTest is preferred and supported.
|
||||
|
||||
import scipy
|
||||
from scipy import stats
|
||||
|
||||
class StatisticalTest:
|
||||
|
||||
def ttest_onesample(self, a, popmean, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.ttest_1samp(a, popmean, axis = axis, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_independent(self, a, b, equal = True, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.ttest_ind(a, b, equal_var = equal, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_statistic(self, o1, o2, equal = True):
|
||||
|
||||
results = scipy.stats.ttest_ind_from_stats(o1["mean"], o1["std"], o1["nobs"], o2["mean"], o2["std"], o2["nobs"], equal_var = equal)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ttest_related(self, a, b, axis = 0, nan_policy='propagate'):
|
||||
|
||||
results = scipy.stats.ttest_rel(a, b, axis = axis, nan_policy = nan_policy)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ks_fitness(self, rvs, cdf, args = (), N = 20, alternative = 'two-sided', mode = 'approx'):
|
||||
|
||||
results = scipy.stats.kstest(rvs, cdf, args = args, N = N, alternative = alternative, mode = mode)
|
||||
return {"ks-value": results[0], "p-value": results[1]}
|
||||
|
||||
def chisquare(self, f_obs, f_exp = None, ddof = None, axis = 0):
|
||||
|
||||
results = scipy.stats.chisquare(f_obs, f_exp = f_exp, ddof = ddof, axis = axis)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def powerdivergence(self, f_obs, f_exp = None, ddof = None, axis = 0, lambda_ = None):
|
||||
|
||||
results = scipy.stats.power_divergence(f_obs, f_exp = f_exp, ddof = ddof, axis = axis, lambda_ = lambda_)
|
||||
return {"powerdivergence-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ks_twosample(self, x, y, alternative = 'two_sided', mode = 'auto'):
|
||||
|
||||
results = scipy.stats.ks_2samp(x, y, alternative = alternative, mode = mode)
|
||||
return {"ks-value": results[0], "p-value": results[1]}
|
||||
|
||||
def es_twosample(self, x, y, t = (0.4, 0.8)):
|
||||
|
||||
results = scipy.stats.epps_singleton_2samp(x, y, t = t)
|
||||
return {"es-value": results[0], "p-value": results[1]}
|
||||
|
||||
def mw_rank(self, x, y, use_continuity = True, alternative = None):
|
||||
|
||||
results = scipy.stats.mannwhitneyu(x, y, use_continuity = use_continuity, alternative = alternative)
|
||||
return {"u-value": results[0], "p-value": results[1]}
|
||||
|
||||
def mw_tiecorrection(self, rank_values):
|
||||
|
||||
results = scipy.stats.tiecorrect(rank_values)
|
||||
return {"correction-factor": results}
|
||||
|
||||
def rankdata(self, a, method = 'average'):
|
||||
|
||||
results = scipy.stats.rankdata(a, method = method)
|
||||
return results
|
||||
|
||||
def wilcoxon_ranksum(self, a, b): # this seems to be superceded by Mann Whitney Wilcoxon U Test
|
||||
|
||||
results = scipy.stats.ranksums(a, b)
|
||||
return {"u-value": results[0], "p-value": results[1]}
|
||||
|
||||
def wilcoxon_signedrank(self, x, y = None, zero_method = 'wilcox', correction = False, alternative = 'two-sided'):
|
||||
|
||||
results = scipy.stats.wilcoxon(x, y = y, zero_method = zero_method, correction = correction, alternative = alternative)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def kw_htest(self, *args, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.kruskal(*args, nan_policy = nan_policy)
|
||||
return {"h-value": results[0], "p-value": results[1]}
|
||||
|
||||
def friedman_chisquare(self, *args):
|
||||
|
||||
results = scipy.stats.friedmanchisquare(*args)
|
||||
return {"chisquared-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bm_wtest(self, x, y, alternative = 'two-sided', distribution = 't', nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.brunnermunzel(x, y, alternative = alternative, distribution = distribution, nan_policy = nan_policy)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def combine_pvalues(self, pvalues, method = 'fisher', weights = None):
|
||||
|
||||
results = scipy.stats.combine_pvalues(pvalues, method = method, weights = weights)
|
||||
return {"combined-statistic": results[0], "p-value": results[1]}
|
||||
|
||||
def jb_fitness(self, x):
|
||||
|
||||
results = scipy.stats.jarque_bera(x)
|
||||
return {"jb-value": results[0], "p-value": results[1]}
|
||||
|
||||
def ab_equality(self, x, y):
|
||||
|
||||
results = scipy.stats.ansari(x, y)
|
||||
return {"ab-value": results[0], "p-value": results[1]}
|
||||
|
||||
def bartlett_variance(self, *args):
|
||||
|
||||
results = scipy.stats.bartlett(*args)
|
||||
return {"t-value": results[0], "p-value": results[1]}
|
||||
|
||||
def levene_variance(self, *args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.levene(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def sw_normality(self, x):
|
||||
|
||||
results = scipy.stats.shapiro(x)
|
||||
return {"w-value": results[0], "p-value": results[1]}
|
||||
|
||||
def shapiro(self, x):
|
||||
|
||||
return "destroyed by facts and logic"
|
||||
|
||||
def ad_onesample(self, x, dist = 'norm'):
|
||||
|
||||
results = scipy.stats.anderson(x, dist = dist)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def ad_ksample(self, samples, midrank = True):
|
||||
|
||||
results = scipy.stats.anderson_ksamp(samples, midrank = midrank)
|
||||
return {"d-value": results[0], "critical-values": results[1], "significance-value": results[2]}
|
||||
|
||||
def binomial(self, x, n = None, p = 0.5, alternative = 'two-sided'):
|
||||
|
||||
results = scipy.stats.binom_test(x, n = n, p = p, alternative = alternative)
|
||||
return {"p-value": results}
|
||||
|
||||
def fk_variance(self, *args, center = 'median', proportiontocut = 0.05):
|
||||
|
||||
results = scipy.stats.fligner(*args, center = center, proportiontocut = proportiontocut)
|
||||
return {"h-value": results[0], "p-value": results[1]} # unknown if the statistic is an h value
|
||||
|
||||
def mood_mediantest(self, *args, ties = 'below', correction = True, lambda_ = 1, nan_policy = 'propagate'):
|
||||
|
||||
results = scipy.stats.median_test(*args, ties = ties, correction = correction, lambda_ = lambda_, nan_policy = nan_policy)
|
||||
return {"chisquared-value": results[0], "p-value": results[1], "m-value": results[2], "table": results[3]}
|
||||
|
||||
def mood_equalscale(self, x, y, axis = 0):
|
||||
|
||||
results = scipy.stats.mood(x, y, axis = axis)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def skewtest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.skewtest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def kurtosistest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.kurtosistest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
||||
|
||||
def normaltest(self, a, axis = 0, nan_policy = 'propogate'):
|
||||
|
||||
results = scipy.stats.normaltest(a, axis = axis, nan_policy = nan_policy)
|
||||
return {"z-score": results[0], "p-value": results[1]}
|
@ -0,0 +1,45 @@
|
||||
# Titan Robotics Team 2022: tra_analysis package
|
||||
# Written by Arthur Lu, Jacob Levine, Dev Singh, and James Pan
|
||||
# Notes:
|
||||
# this should be imported as a python package using 'import tra_analysis'
|
||||
# this should be included in the local directory or environment variable
|
||||
# this module has been optimized for multhreaded computing
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "2.1.0-alpha.3"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
2.1.0-alpha.3:
|
||||
- fixed indentation in meta data
|
||||
2.1.0-alpha.2:
|
||||
- updated SVM import
|
||||
2.1.0-alpha.1:
|
||||
- moved multiple submodules under analysis to their own modules/files
|
||||
- added header, __version__, __changelog__, __author__, __all__ (unpopulated)
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
"Jacob Levine <jlevine@imsa.edu>",
|
||||
"Dev Singh <dev@devksingh.com>",
|
||||
"James Pan <zpan@imsa.edu>"
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
]
|
||||
|
||||
from . import Analysis as Analysis
|
||||
from .Array import Array
|
||||
from .ClassificationMetric import ClassificationMetric
|
||||
from . import CorrelationTest
|
||||
from .equation import Expression
|
||||
from . import Fit
|
||||
from . import KNN
|
||||
from . import NaiveBayes
|
||||
from . import RandomForest
|
||||
from .RegressionMetric import RegressionMetric
|
||||
from . import Sort
|
||||
from . import StatisticalTest
|
||||
from . import SVM
|
File diff suppressed because it is too large
Load Diff
@ -1,162 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import re\n",
|
||||
"from decimal import Decimal\n",
|
||||
"from functools import reduce"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def add(string):\n",
|
||||
" while(len(re.findall(\"[+]{1}[-]?\", string)) != 0):\n",
|
||||
" string = re.sub(\"[-]?\\d+[.]?\\d*[+]{1}[-]?\\d+[.]?\\d*\", str(\"%f\" % reduce((lambda x, y: x + y), [Decimal(i) for i in re.split(\"[+]{1}\", re.search(\"[-]?\\d+[.]?\\d*[+]{1}[-]?\\d+[.]?\\d*\", string).group())])), string, 1)\n",
|
||||
" return string"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def sub(string):\n",
|
||||
" while(len(re.findall(\"\\d+[.]?\\d*[-]{1,2}\\d+[.]?\\d*\", string)) != 0):\n",
|
||||
" g = re.search(\"\\d+[.]?\\d*[-]{1,2}\\d+[.]?\\d*\", string).group()\n",
|
||||
" if(re.search(\"[-]{1,2}\", g).group() == \"-\"):\n",
|
||||
" r = re.sub(\"[-]{1}\", \"+-\", g, 1)\n",
|
||||
" string = re.sub(g, r, string, 1)\n",
|
||||
" elif(re.search(\"[-]{1,2}\", g).group() == \"--\"):\n",
|
||||
" r = re.sub(\"[-]{2}\", \"+\", g, 1)\n",
|
||||
" string = re.sub(g, r, string, 1)\n",
|
||||
" else:\n",
|
||||
" pass\n",
|
||||
" return string"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def mul(string):\n",
|
||||
" while(len(re.findall(\"[*]{1}[-]?\", string)) != 0):\n",
|
||||
" string = re.sub(\"[-]?\\d+[.]?\\d*[*]{1}[-]?\\d+[.]?\\d*\", str(\"%f\" % reduce((lambda x, y: x * y), [Decimal(i) for i in re.split(\"[*]{1}\", re.search(\"[-]?\\d+[.]?\\d*[*]{1}[-]?\\d+[.]?\\d*\", string).group())])), string, 1)\n",
|
||||
" return string"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def div(string):\n",
|
||||
" while(len(re.findall(\"[/]{1}[-]?\", string)) != 0):\n",
|
||||
" string = re.sub(\"[-]?\\d+[.]?\\d*[/]{1}[-]?\\d+[.]?\\d*\", str(\"%f\" % reduce((lambda x, y: x / y), [Decimal(i) for i in re.split(\"[/]{1}\", re.search(\"[-]?\\d+[.]?\\d*[/]{1}[-]?\\d+[.]?\\d*\", string).group())])), string, 1)\n",
|
||||
" return string"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def exp(string):\n",
|
||||
" while(len(re.findall(\"[\\^]{1}[-]?\", string)) != 0):\n",
|
||||
" string = re.sub(\"[-]?\\d+[.]?\\d*[\\^]{1}[-]?\\d+[.]?\\d*\", str(\"%f\" % reduce((lambda x, y: x ** y), [Decimal(i) for i in re.split(\"[\\^]{1}\", re.search(\"[-]?\\d+[.]?\\d*[\\^]{1}[-]?\\d+[.]?\\d*\", string).group())])), string, 1)\n",
|
||||
" return string"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def evaluate(string):\n",
|
||||
" string = exp(string)\n",
|
||||
" string = div(string)\n",
|
||||
" string = mul(string)\n",
|
||||
" string = sub(string)\n",
|
||||
" print(string)\n",
|
||||
" string = add(string)\n",
|
||||
" return string"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "error",
|
||||
"ename": "SyntaxError",
|
||||
"evalue": "unexpected EOF while parsing (<ipython-input-13-f9fb4aededd9>, line 1)",
|
||||
"traceback": [
|
||||
"\u001b[1;36m File \u001b[1;32m\"<ipython-input-13-f9fb4aededd9>\"\u001b[1;36m, line \u001b[1;32m1\u001b[0m\n\u001b[1;33m def parentheses(string):\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mSyntaxError\u001b[0m\u001b[1;31m:\u001b[0m unexpected EOF while parsing\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"def parentheses(string):"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"output_type": "stream",
|
||||
"name": "stdout",
|
||||
"text": "-158456325028528675187087900672.000000+0.8\n"
|
||||
},
|
||||
{
|
||||
"output_type": "execute_result",
|
||||
"data": {
|
||||
"text/plain": "'-158456325028528675187087900672.000000'"
|
||||
},
|
||||
"metadata": {},
|
||||
"execution_count": 22
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"string = \"8^32*4/-2+0.8\"\n",
|
||||
"evaluate(string)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6-final"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
37
analysis-master/tra_analysis/equation/Expression.py
Normal file
37
analysis-master/tra_analysis/equation/Expression.py
Normal file
@ -0,0 +1,37 @@
|
||||
# Titan Robotics Team 2022: Expression submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis.Equation import Expression'
|
||||
# TODO:
|
||||
# - add option to pick parser backend
|
||||
# - fix unit tests
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.1-alpha"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
0.0.1-alpha:
|
||||
- used the HybridExpressionParser as backend for Expression
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = {
|
||||
"Expression"
|
||||
}
|
||||
|
||||
import re
|
||||
from .parser import BNF, RegexInplaceParser, HybridExpressionParser, Core, equation_base
|
||||
|
||||
class Expression(HybridExpressionParser):
|
||||
|
||||
expression = None
|
||||
core = None
|
||||
|
||||
def __init__(self,expression,argorder=[],*args,**kwargs):
|
||||
self.core = Core()
|
||||
equation_base.equation_extend(self.core)
|
||||
self.core.recalculateFMatch()
|
||||
super().__init__(self.core, expression, argorder=[],*args,**kwargs)
|
22
analysis-master/tra_analysis/equation/__init__.py
Normal file
22
analysis-master/tra_analysis/equation/__init__.py
Normal file
@ -0,0 +1,22 @@
|
||||
# Titan Robotics Team 2022: Expression submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis import Equation'
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.1-alpha"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
0.0.1-alpha:
|
||||
- made first prototype of Expression
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = {
|
||||
"Expression"
|
||||
}
|
||||
|
||||
from .Expression import Expression
|
97
analysis-master/tra_analysis/equation/parser/BNF.py
Normal file
97
analysis-master/tra_analysis/equation/parser/BNF.py
Normal file
@ -0,0 +1,97 @@
|
||||
from __future__ import division
|
||||
from pyparsing import (Literal, CaselessLiteral, Word, Combine, Group, Optional, ZeroOrMore, Forward, nums, alphas, oneOf)
|
||||
from . import py2
|
||||
import math
|
||||
import operator
|
||||
|
||||
class BNF(object):
|
||||
|
||||
def pushFirst(self, strg, loc, toks):
|
||||
self.exprStack.append(toks[0])
|
||||
|
||||
def pushUMinus(self, strg, loc, toks):
|
||||
if toks and toks[0] == '-':
|
||||
self.exprStack.append('unary -')
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
expop :: '^'
|
||||
multop :: '*' | '/'
|
||||
addop :: '+' | '-'
|
||||
integer :: ['+' | '-'] '0'..'9'+
|
||||
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
|
||||
factor :: atom [ expop factor ]*
|
||||
term :: factor [ multop factor ]*
|
||||
expr :: term [ addop term ]*
|
||||
"""
|
||||
point = Literal(".")
|
||||
e = CaselessLiteral("E")
|
||||
fnumber = Combine(Word("+-" + nums, nums) +
|
||||
Optional(point + Optional(Word(nums))) +
|
||||
Optional(e + Word("+-" + nums, nums)))
|
||||
ident = Word(alphas, alphas + nums + "_$")
|
||||
plus = Literal("+")
|
||||
minus = Literal("-")
|
||||
mult = Literal("*")
|
||||
div = Literal("/")
|
||||
lpar = Literal("(").suppress()
|
||||
rpar = Literal(")").suppress()
|
||||
addop = plus | minus
|
||||
multop = mult | div
|
||||
expop = Literal("^")
|
||||
pi = CaselessLiteral("PI")
|
||||
expr = Forward()
|
||||
atom = ((Optional(oneOf("- +")) +
|
||||
(ident + lpar + expr + rpar | pi | e | fnumber).setParseAction(self.pushFirst))
|
||||
| Optional(oneOf("- +")) + Group(lpar + expr + rpar)
|
||||
).setParseAction(self.pushUMinus)
|
||||
factor = Forward()
|
||||
factor << atom + \
|
||||
ZeroOrMore((expop + factor).setParseAction(self.pushFirst))
|
||||
term = factor + \
|
||||
ZeroOrMore((multop + factor).setParseAction(self.pushFirst))
|
||||
expr << term + \
|
||||
ZeroOrMore((addop + term).setParseAction(self.pushFirst))
|
||||
|
||||
self.bnf = expr
|
||||
|
||||
epsilon = 1e-12
|
||||
|
||||
self.opn = {"+": operator.add,
|
||||
"-": operator.sub,
|
||||
"*": operator.mul,
|
||||
"/": operator.truediv,
|
||||
"^": operator.pow}
|
||||
self.fn = {"sin": math.sin,
|
||||
"cos": math.cos,
|
||||
"tan": math.tan,
|
||||
"exp": math.exp,
|
||||
"abs": abs,
|
||||
"trunc": lambda a: int(a),
|
||||
"round": round,
|
||||
"sgn": lambda a: abs(a) > epsilon and py2.cmp(a, 0) or 0}
|
||||
|
||||
def evaluateStack(self, s):
|
||||
op = s.pop()
|
||||
if op == 'unary -':
|
||||
return -self.evaluateStack(s)
|
||||
if op in "+-*/^":
|
||||
op2 = self.evaluateStack(s)
|
||||
op1 = self.evaluateStack(s)
|
||||
return self.opn[op](op1, op2)
|
||||
elif op == "PI":
|
||||
return math.pi
|
||||
elif op == "E":
|
||||
return math.e
|
||||
elif op in self.fn:
|
||||
return self.fn[op](self.evaluateStack(s))
|
||||
elif op[0].isalpha():
|
||||
return 0
|
||||
else:
|
||||
return float(op)
|
||||
|
||||
def eval(self, num_string, parseAll=True):
|
||||
self.exprStack = []
|
||||
results = self.bnf.parseString(num_string, parseAll)
|
||||
val = self.evaluateStack(self.exprStack[:])
|
||||
return val
|
521
analysis-master/tra_analysis/equation/parser/Hybrid.py
Normal file
521
analysis-master/tra_analysis/equation/parser/Hybrid.py
Normal file
@ -0,0 +1,521 @@
|
||||
from .Hybrid_Utils import Core, ExpressionFunction, ExpressionVariable, ExpressionValue
|
||||
import sys
|
||||
|
||||
if sys.version_info >= (3,):
|
||||
xrange = range
|
||||
basestring = str
|
||||
|
||||
class HybridExpressionParser(object):
|
||||
|
||||
def __init__(self,core,expression,argorder=[],*args,**kwargs):
|
||||
super(HybridExpressionParser,self).__init__(*args,**kwargs)
|
||||
if isinstance(expression,type(self)): # clone the object
|
||||
self.core = core
|
||||
self.__args = list(expression.__args)
|
||||
self.__vars = dict(expression.__vars) # intenral array of preset variables
|
||||
self.__argsused = set(expression.__argsused)
|
||||
self.__expr = list(expression.__expr)
|
||||
self.variables = {} # call variables
|
||||
else:
|
||||
self.__expression = expression
|
||||
self.__args = argorder;
|
||||
self.__vars = {} # intenral array of preset variables
|
||||
self.__argsused = set()
|
||||
self.__expr = [] # compiled equation tokens
|
||||
self.variables = {} # call variables
|
||||
self.__compile()
|
||||
del self.__expression
|
||||
|
||||
def __getitem__(self, name):
|
||||
if name in self.__argsused:
|
||||
if name in self.__vars:
|
||||
return self.__vars[name]
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
raise KeyError(name)
|
||||
|
||||
def __setitem__(self,name,value):
|
||||
|
||||
if name in self.__argsused:
|
||||
self.__vars[name] = value
|
||||
else:
|
||||
raise KeyError(name)
|
||||
|
||||
def __delitem__(self,name):
|
||||
|
||||
if name in self.__argsused:
|
||||
if name in self.__vars:
|
||||
del self.__vars[name]
|
||||
else:
|
||||
raise KeyError(name)
|
||||
|
||||
def __contains__(self, name):
|
||||
|
||||
return name in self.__argsused
|
||||
|
||||
def __call__(self,*args,**kwargs):
|
||||
|
||||
if len(self.__expr) == 0:
|
||||
return None
|
||||
self.variables = {}
|
||||
self.variables.update(self.core.constants)
|
||||
self.variables.update(self.__vars)
|
||||
if len(args) > len(self.__args):
|
||||
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() takes at most {4:d} arguments ({5:d} given)".format(
|
||||
type(self).__module__,type(self).__name__,repr(self),id(self),len(self.__args),len(args)))
|
||||
for i in xrange(len(args)):
|
||||
if i < len(self.__args):
|
||||
if self.__args[i] in kwargs:
|
||||
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() got multiple values for keyword argument '{4:s}'".format(
|
||||
type(self).__module__,type(self).__name__,repr(self),id(self),self.__args[i]))
|
||||
self.variables[self.__args[i]] = args[i]
|
||||
self.variables.update(kwargs)
|
||||
for arg in self.__argsused:
|
||||
if arg not in self.variables:
|
||||
min_args = len(self.__argsused - (set(self.__vars.keys()) | set(self.core.constants.keys())))
|
||||
raise TypeError("<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>() takes at least {4:d} arguments ({5:d} given) '{6:s}' not defined".format(
|
||||
type(self).__module__,type(self).__name__,repr(self),id(self),min_args,len(args)+len(kwargs),arg))
|
||||
expr = self.__expr[::-1]
|
||||
args = []
|
||||
while len(expr) > 0:
|
||||
t = expr.pop()
|
||||
r = t(args,self)
|
||||
args.append(r)
|
||||
if len(args) > 1:
|
||||
return args
|
||||
else:
|
||||
return args[0]
|
||||
|
||||
def __next(self,__expect_op):
|
||||
if __expect_op:
|
||||
m = self.core.gematch.match(self.__expression)
|
||||
if m != None:
|
||||
self.__expression = self.__expression[m.end():]
|
||||
g = m.groups()
|
||||
return g[0],'CLOSE'
|
||||
m = self.core.smatch.match(self.__expression)
|
||||
if m != None:
|
||||
self.__expression = self.__expression[m.end():]
|
||||
return ",",'SEP'
|
||||
m = self.core.omatch.match(self.__expression)
|
||||
if m != None:
|
||||
self.__expression = self.__expression[m.end():]
|
||||
g = m.groups()
|
||||
return g[0],'OP'
|
||||
else:
|
||||
m = self.core.gsmatch.match(self.__expression)
|
||||
if m != None:
|
||||
self.__expression = self.__expression[m.end():]
|
||||
g = m.groups()
|
||||
return g[0],'OPEN'
|
||||
m = self.core.vmatch.match(self.__expression)
|
||||
if m != None:
|
||||
self.__expression = self.__expression[m.end():]
|
||||
g = m.groupdict(0)
|
||||
if g['dec']:
|
||||
if g["ivalue"]:
|
||||
return complex(int(g["rsign"]+"1")*float(g["rvalue"])*10**int(g["rexpoent"]),int(g["isign"]+"1")*float(g["ivalue"])*10**int(g["iexpoent"])),'VALUE'
|
||||
elif g["rexpoent"] or g["rvalue"].find('.')>=0:
|
||||
return int(g["rsign"]+"1")*float(g["rvalue"])*10**int(g["rexpoent"]),'VALUE'
|
||||
else:
|
||||
return int(g["rsign"]+"1")*int(g["rvalue"]),'VALUE'
|
||||
elif g["hex"]:
|
||||
return int(g["hexsign"]+"1")*int(g["hexvalue"],16),'VALUE'
|
||||
elif g["oct"]:
|
||||
return int(g["octsign"]+"1")*int(g["octvalue"],8),'VALUE'
|
||||
elif g["bin"]:
|
||||
return int(g["binsign"]+"1")*int(g["binvalue"],2),'VALUE'
|
||||
else:
|
||||
raise NotImplemented("'{0:s}' Values Not Implemented Yet".format(m.string))
|
||||
m = self.core.nmatch.match(self.__expression)
|
||||
if m != None:
|
||||
self.__expression = self.__expression[m.end():]
|
||||
g = m.groups()
|
||||
return g[0],'NAME'
|
||||
m = self.core.fmatch.match(self.__expression)
|
||||
if m != None:
|
||||
self.__expression = self.__expression[m.end():]
|
||||
g = m.groups()
|
||||
return g[0],'FUNC'
|
||||
m = self.core.umatch.match(self.__expression)
|
||||
if m != None:
|
||||
self.__expression = self.__expression[m.end():]
|
||||
g = m.groups()
|
||||
return g[0],'UNARY'
|
||||
return None
|
||||
|
||||
def show(self):
|
||||
"""Show RPN tokens
|
||||
|
||||
This will print out the internal token list (RPN) of the expression
|
||||
one token perline.
|
||||
"""
|
||||
for expr in self.__expr:
|
||||
print(expr)
|
||||
|
||||
def __str__(self):
|
||||
"""str(fn)
|
||||
|
||||
Generates a Printable version of the Expression
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
Latex String respresation of the Expression, suitable for rendering the equation
|
||||
"""
|
||||
expr = self.__expr[::-1]
|
||||
if len(expr) == 0:
|
||||
return ""
|
||||
args = [];
|
||||
while len(expr) > 0:
|
||||
t = expr.pop()
|
||||
r = t.toStr(args,self)
|
||||
args.append(r)
|
||||
if len(args) > 1:
|
||||
return args
|
||||
else:
|
||||
return args[0]
|
||||
|
||||
def __repr__(self):
|
||||
"""repr(fn)
|
||||
|
||||
Generates a String that correctrly respresents the equation
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
Convert the Expression to a String that passed to the constructor, will constuct
|
||||
an identical equation object (in terms of sequence of tokens, and token type/value)
|
||||
"""
|
||||
expr = self.__expr[::-1]
|
||||
if len(expr) == 0:
|
||||
return ""
|
||||
args = [];
|
||||
while len(expr) > 0:
|
||||
t = expr.pop()
|
||||
r = t.toRepr(args,self)
|
||||
args.append(r)
|
||||
if len(args) > 1:
|
||||
return args
|
||||
else:
|
||||
return args[0]
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.__argsused)
|
||||
|
||||
def __lt__(self, other):
|
||||
if isinstance(other, Expression):
|
||||
return repr(self) < repr(other)
|
||||
else:
|
||||
raise TypeError("{0:s} is not an {1:s} Object, and can't be compared to an Expression Object".format(repr(other), type(other)))
|
||||
|
||||
def __eq__(self, other):
|
||||
if isinstance(other, Expression):
|
||||
return repr(self) == repr(other)
|
||||
else:
|
||||
raise TypeError("{0:s} is not an {1:s} Object, and can't be compared to an Expression Object".format(repr(other), type(other)))
|
||||
|
||||
def __combine(self,other,op):
|
||||
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
|
||||
return NotImplemented
|
||||
else:
|
||||
obj = type(self)(self)
|
||||
if isinstance(other,(int,float,complex)):
|
||||
obj.__expr.append(ExpressionValue(other))
|
||||
else:
|
||||
if isinstance(other,basestring):
|
||||
try:
|
||||
other = type(self)(other)
|
||||
except:
|
||||
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
|
||||
obj.__expr += other.__expr
|
||||
obj.__argsused |= other.__argsused
|
||||
for v in other.__args:
|
||||
if v not in obj.__args:
|
||||
obj.__args.append(v)
|
||||
for k,v in other.__vars.items():
|
||||
if k not in obj.__vars:
|
||||
obj.__vars[k] = v
|
||||
elif v != obj.__vars[k]:
|
||||
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
|
||||
fn = self.core.ops[op]
|
||||
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
|
||||
return obj
|
||||
|
||||
def __rcombine(self,other,op):
|
||||
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
|
||||
return NotImplemented
|
||||
else:
|
||||
obj = type(self)(self)
|
||||
if isinstance(other,(int,float,complex)):
|
||||
obj.__expr.insert(0,ExpressionValue(other))
|
||||
else:
|
||||
if isinstance(other,basestring):
|
||||
try:
|
||||
other = type(self)(other)
|
||||
except:
|
||||
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
|
||||
obj.__expr = other.__expr + self.__expr
|
||||
obj.__argsused = other.__argsused | self.__expr
|
||||
__args = other.__args
|
||||
for v in obj.__args:
|
||||
if v not in __args:
|
||||
__args.append(v)
|
||||
obj.__args = __args
|
||||
for k,v in other.__vars.items():
|
||||
if k not in obj.__vars:
|
||||
obj.__vars[k] = v
|
||||
elif v != obj.__vars[k]:
|
||||
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
|
||||
fn = self.core.ops[op]
|
||||
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
|
||||
return obj
|
||||
|
||||
def __icombine(self,other,op):
|
||||
if op not in self.core.ops or not isinstance(other,(int,float,complex,type(self),basestring)):
|
||||
return NotImplemented
|
||||
else:
|
||||
obj = self
|
||||
if isinstance(other,(int,float,complex)):
|
||||
obj.__expr.append(ExpressionValue(other))
|
||||
else:
|
||||
if isinstance(other,basestring):
|
||||
try:
|
||||
other = type(self)(other)
|
||||
except:
|
||||
raise SyntaxError("Can't Convert string, \"{0:s}\" to an Expression Object".format(other))
|
||||
obj.__expr += other.__expr
|
||||
obj.__argsused |= other.__argsused
|
||||
for v in other.__args:
|
||||
if v not in obj.__args:
|
||||
obj.__args.append(v)
|
||||
for k,v in other.__vars.items():
|
||||
if k not in obj.__vars:
|
||||
obj.__vars[k] = v
|
||||
elif v != obj.__vars[k]:
|
||||
raise RuntimeError("Predifined Variable Conflict in '{0:s}' two differing values defined".format(k))
|
||||
fn = self.core.ops[op]
|
||||
obj.__expr.append(ExpressionFunction(fn['func'],fn['args'],fn['str'],fn['latex'],op,False))
|
||||
return obj
|
||||
|
||||
def __apply(self,op):
|
||||
fn = self.core.unary_ops[op]
|
||||
obj = type(self)(self)
|
||||
obj.__expr.append(ExpressionFunction(fn['func'],1,fn['str'],fn['latex'],op,False))
|
||||
return obj
|
||||
|
||||
def __applycall(self,op):
|
||||
fn = self.core.functions[op]
|
||||
if 1 not in fn['args'] or '*' not in fn['args']:
|
||||
raise RuntimeError("Can't Apply {0:s} function, dosen't accept only 1 argument".format(op))
|
||||
obj = type(self)(self)
|
||||
obj.__expr.append(ExpressionFunction(fn['func'],1,fn['str'],fn['latex'],op,False))
|
||||
return obj
|
||||
|
||||
def __add__(self,other):
|
||||
return self.__combine(other,'+')
|
||||
|
||||
def __sub__(self,other):
|
||||
return self.__combine(other,'-')
|
||||
|
||||
def __mul__(self,other):
|
||||
return self.__combine(other,'*')
|
||||
|
||||
def __div__(self,other):
|
||||
return self.__combine(other,'/')
|
||||
|
||||
def __truediv__(self,other):
|
||||
return self.__combine(other,'/')
|
||||
|
||||
def __pow__(self,other):
|
||||
return self.__combine(other,'^')
|
||||
|
||||
def __mod__(self,other):
|
||||
return self.__combine(other,'%')
|
||||
|
||||
def __and__(self,other):
|
||||
return self.__combine(other,'&')
|
||||
|
||||
def __or__(self,other):
|
||||
return self.__combine(other,'|')
|
||||
|
||||
def __xor__(self,other):
|
||||
return self.__combine(other,'</>')
|
||||
|
||||
def __radd__(self,other):
|
||||
return self.__rcombine(other,'+')
|
||||
|
||||
def __rsub__(self,other):
|
||||
return self.__rcombine(other,'-')
|
||||
|
||||
def __rmul__(self,other):
|
||||
return self.__rcombine(other,'*')
|
||||
|
||||
def __rdiv__(self,other):
|
||||
return self.__rcombine(other,'/')
|
||||
|
||||
def __rtruediv__(self,other):
|
||||
return self.__rcombine(other,'/')
|
||||
|
||||
def __rpow__(self,other):
|
||||
return self.__rcombine(other,'^')
|
||||
|
||||
def __rmod__(self,other):
|
||||
return self.__rcombine(other,'%')
|
||||
|
||||
def __rand__(self,other):
|
||||
return self.__rcombine(other,'&')
|
||||
|
||||
def __ror__(self,other):
|
||||
return self.__rcombine(other,'|')
|
||||
|
||||
def __rxor__(self,other):
|
||||
return self.__rcombine(other,'</>')
|
||||
|
||||
def __iadd__(self,other):
|
||||
return self.__icombine(other,'+')
|
||||
|
||||
def __isub__(self,other):
|
||||
return self.__icombine(other,'-')
|
||||
|
||||
def __imul__(self,other):
|
||||
return self.__icombine(other,'*')
|
||||
|
||||
def __idiv__(self,other):
|
||||
return self.__icombine(other,'/')
|
||||
|
||||
def __itruediv__(self,other):
|
||||
return self.__icombine(other,'/')
|
||||
|
||||
def __ipow__(self,other):
|
||||
return self.__icombine(other,'^')
|
||||
|
||||
def __imod__(self,other):
|
||||
return self.__icombine(other,'%')
|
||||
|
||||
def __iand__(self,other):
|
||||
return self.__icombine(other,'&')
|
||||
|
||||
def __ior__(self,other):
|
||||
return self.__icombine(other,'|')
|
||||
|
||||
def __ixor__(self,other):
|
||||
return self.__icombine(other,'</>')
|
||||
|
||||
def __neg__(self):
|
||||
return self.__apply('-')
|
||||
|
||||
def __invert__(self):
|
||||
return self.__apply('!')
|
||||
|
||||
def __abs__(self):
|
||||
return self.__applycall('abs')
|
||||
|
||||
def __getfunction(self,op):
|
||||
if op[1] == 'FUNC':
|
||||
fn = self.core.functions[op[0]]
|
||||
fn['type'] = 'FUNC'
|
||||
elif op[1] == 'UNARY':
|
||||
fn = self.core.unary_ops[op[0]]
|
||||
fn['type'] = 'UNARY'
|
||||
fn['args'] = 1
|
||||
elif op[1] == 'OP':
|
||||
fn = self.core.ops[op[0]]
|
||||
fn['type'] = 'OP'
|
||||
return fn
|
||||
|
||||
def __compile(self):
|
||||
self.__expr = []
|
||||
stack = []
|
||||
argc = []
|
||||
__expect_op = False
|
||||
v = self.__next(__expect_op)
|
||||
while v != None:
|
||||
if not __expect_op and v[1] == "OPEN":
|
||||
stack.append(v)
|
||||
__expect_op = False
|
||||
elif __expect_op and v[1] == "CLOSE":
|
||||
op = stack.pop()
|
||||
while op[1] != "OPEN":
|
||||
fs = self.__getfunction(op)
|
||||
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
|
||||
op = stack.pop()
|
||||
if len(stack) > 0 and stack[-1][0] in self.core.functions:
|
||||
op = stack.pop()
|
||||
fs = self.core.functions[op[0]]
|
||||
args = argc.pop()
|
||||
if fs['args'] != '+' and (args != fs['args'] and args not in fs['args']):
|
||||
raise SyntaxError("Invalid number of arguments for {0:s} function".format(op[0]))
|
||||
self.__expr.append(ExpressionFunction(fs['func'],args,fs['str'],fs['latex'],op[0],True))
|
||||
__expect_op = True
|
||||
elif __expect_op and v[0] == ",":
|
||||
argc[-1] += 1
|
||||
op = stack.pop()
|
||||
while op[1] != "OPEN":
|
||||
fs = self.__getfunction(op)
|
||||
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
|
||||
op = stack.pop()
|
||||
stack.append(op)
|
||||
__expect_op = False
|
||||
elif __expect_op and v[0] in self.core.ops:
|
||||
fn = self.core.ops[v[0]]
|
||||
if len(stack) == 0:
|
||||
stack.append(v)
|
||||
__expect_op = False
|
||||
v = self.__next(__expect_op)
|
||||
continue
|
||||
op = stack.pop()
|
||||
if op[0] == "(":
|
||||
stack.append(op)
|
||||
stack.append(v)
|
||||
__expect_op = False
|
||||
v = self.__next(__expect_op)
|
||||
continue
|
||||
fs = self.__getfunction(op)
|
||||
while True:
|
||||
if (fn['prec'] >= fs['prec']):
|
||||
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
|
||||
if len(stack) == 0:
|
||||
stack.append(v)
|
||||
break
|
||||
op = stack.pop()
|
||||
if op[0] == "(":
|
||||
stack.append(op)
|
||||
stack.append(v)
|
||||
break
|
||||
fs = self.__getfunction(op)
|
||||
else:
|
||||
stack.append(op)
|
||||
stack.append(v)
|
||||
break
|
||||
__expect_op = False
|
||||
elif not __expect_op and v[0] in self.core.unary_ops:
|
||||
fn = self.core.unary_ops[v[0]]
|
||||
stack.append(v)
|
||||
__expect_op = False
|
||||
elif not __expect_op and v[0] in self.core.functions:
|
||||
stack.append(v)
|
||||
argc.append(1)
|
||||
__expect_op = False
|
||||
elif not __expect_op and v[1] == 'NAME':
|
||||
self.__argsused.add(v[0])
|
||||
if v[0] not in self.__args:
|
||||
self.__args.append(v[0])
|
||||
self.__expr.append(ExpressionVariable(v[0]))
|
||||
__expect_op = True
|
||||
elif not __expect_op and v[1] == 'VALUE':
|
||||
self.__expr.append(ExpressionValue(v[0]))
|
||||
__expect_op = True
|
||||
else:
|
||||
raise SyntaxError("Invalid Token \"{0:s}\" in Expression, Expected {1:s}".format(v,"Op" if __expect_op else "Value"))
|
||||
v = self.__next(__expect_op)
|
||||
if len(stack) > 0:
|
||||
op = stack.pop()
|
||||
while op != "(":
|
||||
fs = self.__getfunction(op)
|
||||
self.__expr.append(ExpressionFunction(fs['func'],fs['args'],fs['str'],fs['latex'],op[0],False))
|
||||
if len(stack) > 0:
|
||||
op = stack.pop()
|
||||
else:
|
||||
break
|
@ -0,0 +1,237 @@
|
||||
import math
|
||||
import sys
|
||||
import re
|
||||
|
||||
if sys.version_info >= (3,):
|
||||
xrange = range
|
||||
basestring = str
|
||||
|
||||
class ExpressionObject(object):
|
||||
def __init__(self,*args,**kwargs):
|
||||
super(ExpressionObject,self).__init__(*args,**kwargs)
|
||||
|
||||
def toStr(self,args,expression):
|
||||
return ""
|
||||
|
||||
def toRepr(self,args,expression):
|
||||
return ""
|
||||
|
||||
def __call__(self,args,expression):
|
||||
pass
|
||||
|
||||
class ExpressionValue(ExpressionObject):
|
||||
def __init__(self,value,*args,**kwargs):
|
||||
super(ExpressionValue,self).__init__(*args,**kwargs)
|
||||
self.value = value
|
||||
|
||||
def toStr(self,args,expression):
|
||||
if (isinstance(self.value,complex)):
|
||||
V = [self.value.real,self.value.imag]
|
||||
E = [0,0]
|
||||
B = [0,0]
|
||||
out = ["",""]
|
||||
for i in xrange(2):
|
||||
if V[i] == 0:
|
||||
E[i] = 0
|
||||
B[i] = 0
|
||||
else:
|
||||
E[i] = int(math.floor(math.log10(abs(V[i]))))
|
||||
B[i] = V[i]*10**-E[i]
|
||||
if E[i] in [0,1,2,3] and str(V[i])[-2:] == ".0":
|
||||
B[i] = int(V[i])
|
||||
E[i] = 0
|
||||
if E[i] in [-1,-2] and len(str(V[i])) <= 7:
|
||||
B[i] = V[i]
|
||||
E[i] = 0
|
||||
if i == 1:
|
||||
fmt = "{{0:+{0:s}}}"
|
||||
else:
|
||||
fmt = "{{0:-{0:s}}}"
|
||||
if type(B[i]) == int:
|
||||
out[i] += fmt.format('d').format(B[i])
|
||||
else:
|
||||
out[i] += fmt.format('.5f').format(B[i]).rstrip("0.")
|
||||
if i == 1:
|
||||
out[i] += "\\imath"
|
||||
if E[i] != 0:
|
||||
out[i] += "\\times10^{{{0:d}}}".format(E[i])
|
||||
return "\\left(" + ''.join(out) + "\\right)"
|
||||
elif (isinstance(self.value,float)):
|
||||
V = self.value
|
||||
E = 0
|
||||
B = 0
|
||||
out = ""
|
||||
if V == 0:
|
||||
E = 0
|
||||
B = 0
|
||||
else:
|
||||
E = int(math.floor(math.log10(abs(V))))
|
||||
B = V*10**-E
|
||||
if E in [0,1,2,3] and str(V)[-2:] == ".0":
|
||||
B = int(V)
|
||||
E = 0
|
||||
if E in [-1,-2] and len(str(V)) <= 7:
|
||||
B = V
|
||||
E = 0
|
||||
if type(B) == int:
|
||||
out += "{0:-d}".format(B)
|
||||
else:
|
||||
out += "{0:-.5f}".format(B).rstrip("0.")
|
||||
if E != 0:
|
||||
out += "\\times10^{{{0:d}}}".format(E)
|
||||
return "\\left(" + out + "\\right)"
|
||||
else:
|
||||
return out
|
||||
else:
|
||||
return str(self.value)
|
||||
|
||||
def toRepr(self,args,expression):
|
||||
return str(self.value)
|
||||
|
||||
def __call__(self,args,expression):
|
||||
return self.value
|
||||
|
||||
def __repr__(self):
|
||||
return "<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.value),id(self))
|
||||
|
||||
class ExpressionFunction(ExpressionObject):
|
||||
def __init__(self,function,nargs,form,display,id,isfunc,*args,**kwargs):
|
||||
super(ExpressionFunction,self).__init__(*args,**kwargs)
|
||||
self.function = function
|
||||
self.nargs = nargs
|
||||
self.form = form
|
||||
self.display = display
|
||||
self.id = id
|
||||
self.isfunc = isfunc
|
||||
|
||||
def toStr(self,args,expression):
|
||||
params = []
|
||||
for i in xrange(self.nargs):
|
||||
params.append(args.pop())
|
||||
if self.isfunc:
|
||||
return str(self.display.format(','.join(params[::-1])))
|
||||
else:
|
||||
return str(self.display.format(*params[::-1]))
|
||||
|
||||
def toRepr(self,args,expression):
|
||||
params = []
|
||||
for i in xrange(self.nargs):
|
||||
params.append(args.pop())
|
||||
if self.isfunc:
|
||||
return str(self.form.format(','.join(params[::-1])))
|
||||
else:
|
||||
return str(self.form.format(*params[::-1]))
|
||||
|
||||
def __call__(self,args,expression):
|
||||
params = []
|
||||
for i in xrange(self.nargs):
|
||||
params.append(args.pop())
|
||||
return self.function(*params[::-1])
|
||||
|
||||
def __repr__(self):
|
||||
return "<{0:s}.{1:s}({2:s},{3:d}) object at {4:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.id),self.nargs,id(self))
|
||||
|
||||
class ExpressionVariable(ExpressionObject):
|
||||
def __init__(self,name,*args,**kwargs):
|
||||
super(ExpressionVariable,self).__init__(*args,**kwargs)
|
||||
self.name = name
|
||||
|
||||
def toStr(self,args,expression):
|
||||
return str(self.name)
|
||||
|
||||
def toRepr(self,args,expression):
|
||||
return str(self.name)
|
||||
|
||||
def __call__(self,args,expression):
|
||||
if self.name in expression.variables:
|
||||
return expression.variables[self.name]
|
||||
else:
|
||||
return 0 # Default variables to return 0
|
||||
|
||||
def __repr__(self):
|
||||
return "<{0:s}.{1:s}({2:s}) object at {3:0=#10x}>".format(type(self).__module__,type(self).__name__,str(self.name),id(self))
|
||||
|
||||
class Core():
|
||||
|
||||
constants = {}
|
||||
unary_ops = {}
|
||||
ops = {}
|
||||
functions = {}
|
||||
smatch = re.compile(r"\s*,")
|
||||
vmatch = re.compile(r"\s*"
|
||||
"(?:"
|
||||
"(?P<oct>"
|
||||
"(?P<octsign>[+-]?)"
|
||||
r"\s*0o"
|
||||
"(?P<octvalue>[0-7]+)"
|
||||
")|(?P<hex>"
|
||||
"(?P<hexsign>[+-]?)"
|
||||
r"\s*0x"
|
||||
"(?P<hexvalue>[0-9a-fA-F]+)"
|
||||
")|(?P<bin>"
|
||||
"(?P<binsign>[+-]?)"
|
||||
r"\s*0b"
|
||||
"(?P<binvalue>[01]+)"
|
||||
")|(?P<dec>"
|
||||
"(?P<rsign>[+-]?)"
|
||||
r"\s*"
|
||||
r"(?P<rvalue>(?:\d+\.\d+|\d+\.|\.\d+|\d+))"
|
||||
"(?:"
|
||||
"[Ee]"
|
||||
r"(?P<rexpoent>[+-]?\d+)"
|
||||
")?"
|
||||
"(?:"
|
||||
r"\s*"
|
||||
r"(?P<sep>(?(rvalue)\+|))?"
|
||||
r"\s*"
|
||||
"(?P<isign>(?(rvalue)(?(sep)[+-]?|[+-])|[+-]?)?)"
|
||||
r"\s*"
|
||||
r"(?P<ivalue>(?:\d+\.\d+|\d+\.|\.\d+|\d+))"
|
||||
"(?:"
|
||||
"[Ee]"
|
||||
r"(?P<iexpoent>[+-]?\d+)"
|
||||
")?"
|
||||
"[ij]"
|
||||
")?"
|
||||
")"
|
||||
")")
|
||||
nmatch = re.compile(r"\s*([a-zA-Z_][a-zA-Z0-9_]*)")
|
||||
gsmatch = re.compile(r'\s*(\()')
|
||||
gematch = re.compile(r'\s*(\))')
|
||||
|
||||
def recalculateFMatch(self):
|
||||
|
||||
fks = sorted(self.functions.keys(), key=len, reverse=True)
|
||||
oks = sorted(self.ops.keys(), key=len, reverse=True)
|
||||
uks = sorted(self.unary_ops.keys(), key=len, reverse=True)
|
||||
self.fmatch = re.compile(r'\s*(' + '|'.join(map(re.escape,fks)) + ')')
|
||||
self.omatch = re.compile(r'\s*(' + '|'.join(map(re.escape,oks)) + ')')
|
||||
self.umatch = re.compile(r'\s*(' + '|'.join(map(re.escape,uks)) + ')')
|
||||
|
||||
def addFn(self,id,str,latex,args,func):
|
||||
self.functions[id] = {
|
||||
'str': str,
|
||||
'latex': latex,
|
||||
'args': args,
|
||||
'func': func}
|
||||
|
||||
def addOp(self,id,str,latex,single,prec,func):
|
||||
if single:
|
||||
raise RuntimeError("Single Ops Not Yet Supported")
|
||||
self.ops[id] = {
|
||||
'str': str,
|
||||
'latex': latex,
|
||||
'args': 2,
|
||||
'prec': prec,
|
||||
'func': func}
|
||||
|
||||
def addUnaryOp(self,id,str,latex,func):
|
||||
self.unary_ops[id] = {
|
||||
'str': str,
|
||||
'latex': latex,
|
||||
'args': 1,
|
||||
'prec': 0,
|
||||
'func': func}
|
||||
|
||||
def addConst(self,name,value):
|
||||
self.constants[name] = value
|
@ -0,0 +1,2 @@
|
||||
from . import equation_base as equation_base
|
||||
from .ExpressionCore import ExpressionValue, ExpressionFunction, ExpressionVariable, Core
|
@ -0,0 +1,106 @@
|
||||
try:
|
||||
import numpy as np
|
||||
has_numpy = True
|
||||
except ImportError:
|
||||
import math
|
||||
has_numpy = False
|
||||
try:
|
||||
import scipy.constants
|
||||
has_scipy = True
|
||||
except ImportError:
|
||||
has_scipy = False
|
||||
import operator as op
|
||||
from .similar import sim, nsim, gsim, lsim
|
||||
|
||||
def equation_extend(core):
|
||||
def product(*args):
|
||||
if len(args) == 1 and has_numpy:
|
||||
return np.prod(args[0])
|
||||
else:
|
||||
return reduce(op.mul,args,1)
|
||||
|
||||
def sumargs(*args):
|
||||
if len(args) == 1:
|
||||
return sum(args[0])
|
||||
else:
|
||||
return sum(args)
|
||||
|
||||
core.addOp('+',"({0:s} + {1:s})","\\left({0:s} + {1:s}\\right)",False,3,op.add)
|
||||
core.addOp('-',"({0:s} - {1:s})","\\left({0:s} - {1:s}\\right)",False,3,op.sub)
|
||||
core.addOp('*',"({0:s} * {1:s})","\\left({0:s} \\times {1:s}\\right)",False,2,op.mul)
|
||||
core.addOp('/',"({0:s} / {1:s})","\\frac{{{0:s}}}{{{1:s}}}",False,2,op.truediv)
|
||||
core.addOp('%',"({0:s} % {1:s})","\\left({0:s} \\bmod {1:s}\\right)",False,2,op.mod)
|
||||
core.addOp('^',"({0:s} ^ {1:s})","{0:s}^{{{1:s}}}",False,1,op.pow)
|
||||
core.addOp('**',"({0:s} ^ {1:s})","{0:s}^{{{1:s}}}",False,1,op.pow)
|
||||
core.addOp('&',"({0:s} & {1:s})","\\left({0:s} \\land {1:s}\\right)",False,4,op.and_)
|
||||
core.addOp('|',"({0:s} | {1:s})","\\left({0:s} \\lor {1:s}\\right)",False,4,op.or_)
|
||||
core.addOp('</>',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
|
||||
core.addOp('&|',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
|
||||
core.addOp('|&',"({0:s} </> {1:s})","\\left({0:s} \\oplus {1:s}\\right)",False,4,op.xor)
|
||||
core.addOp('==',"({0:s} == {1:s})","\\left({0:s} = {1:s}\\right)",False,5,op.eq)
|
||||
core.addOp('=',"({0:s} == {1:s})","\\left({0:s} = {1:s}\\right)",False,5,op.eq)
|
||||
core.addOp('~',"({0:s} ~ {1:s})","\\left({0:s} \\approx {1:s}\\right)",False,5,sim)
|
||||
core.addOp('!~',"({0:s} !~ {1:s})","\\left({0:s} \\not\\approx {1:s}\\right)",False,5,nsim)
|
||||
core.addOp('!=',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
|
||||
core.addOp('<>',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
|
||||
core.addOp('><',"({0:s} != {1:s})","\\left({0:s} \\neg {1:s}\\right)",False,5,op.ne)
|
||||
core.addOp('<',"({0:s} < {1:s})","\\left({0:s} < {1:s}\\right)",False,5,op.lt)
|
||||
core.addOp('>',"({0:s} > {1:s})","\\left({0:s} > {1:s}\\right)",False,5,op.gt)
|
||||
core.addOp('<=',"({0:s} <= {1:s})","\\left({0:s} \\leq {1:s}\\right)",False,5,op.le)
|
||||
core.addOp('>=',"({0:s} >= {1:s})","\\left({0:s} \\geq {1:s}\\right)",False,5,op.ge)
|
||||
core.addOp('=<',"({0:s} <= {1:s})","\\left({0:s} \\leq {1:s}\\right)",False,5,op.le)
|
||||
core.addOp('=>',"({0:s} >= {1:s})","\\left({0:s} \\geq {1:s}\\right)",False,5,op.ge)
|
||||
core.addOp('<~',"({0:s} <~ {1:s})","\\left({0:s} \lessapprox {1:s}\\right)",False,5,lsim)
|
||||
core.addOp('>~',"({0:s} >~ {1:s})","\\left({0:s} \\gtrapprox {1:s}\\right)",False,5,gsim)
|
||||
core.addOp('~<',"({0:s} <~ {1:s})","\\left({0:s} \lessapprox {1:s}\\right)",False,5,lsim)
|
||||
core.addOp('~>',"({0:s} >~ {1:s})","\\left({0:s} \\gtrapprox {1:s}\\right)",False,5,gsim)
|
||||
core.addUnaryOp('!',"(!{0:s})","\\neg{0:s}",op.not_)
|
||||
core.addUnaryOp('-',"-{0:s}","-{0:s}",op.neg)
|
||||
core.addFn('abs',"abs({0:s})","\\left|{0:s}\\right|",1,op.abs)
|
||||
core.addFn('sum',"sum({0:s})","\\sum\\left({0:s}\\right)",'+',sumargs)
|
||||
core.addFn('prod',"prod({0:s})","\\prod\\left({0:s}\\right)",'+',product)
|
||||
if has_numpy:
|
||||
core.addFn('floor',"floor({0:s})","\\lfloor {0:s} \\rfloor",1,np.floor)
|
||||
core.addFn('ceil',"ceil({0:s})","\\lceil {0:s} \\rceil",1,np.ceil)
|
||||
core.addFn('round',"round({0:s})","\\lfloor {0:s} \\rceil",1,np.round)
|
||||
core.addFn('sin',"sin({0:s})","\\sin\\left({0:s}\\right)",1,np.sin)
|
||||
core.addFn('cos',"cos({0:s})","\\cos\\left({0:s}\\right)",1,np.cos)
|
||||
core.addFn('tan',"tan({0:s})","\\tan\\left({0:s}\\right)",1,np.tan)
|
||||
core.addFn('re',"re({0:s})","\\Re\\left({0:s}\\right)",1,np.real)
|
||||
core.addFn('im',"re({0:s})","\\Im\\left({0:s}\\right)",1,np.imag)
|
||||
core.addFn('sqrt',"sqrt({0:s})","\\sqrt{{{0:s}}}",1,np.sqrt)
|
||||
core.addConst("pi",np.pi)
|
||||
core.addConst("e",np.e)
|
||||
core.addConst("Inf",np.Inf)
|
||||
core.addConst("NaN",np.NaN)
|
||||
else:
|
||||
core.addFn('floor',"floor({0:s})","\\lfloor {0:s} \\rfloor",1,math.floor)
|
||||
core.addFn('ceil',"ceil({0:s})","\\lceil {0:s} \\rceil",1,math.ceil)
|
||||
core.addFn('round',"round({0:s})","\\lfloor {0:s} \\rceil",1,round)
|
||||
core.addFn('sin',"sin({0:s})","\\sin\\left({0:s}\\right)",1,math.sin)
|
||||
core.addFn('cos',"cos({0:s})","\\cos\\left({0:s}\\right)",1,math.cos)
|
||||
core.addFn('tan',"tan({0:s})","\\tan\\left({0:s}\\right)",1,math.tan)
|
||||
core.addFn('re',"re({0:s})","\\Re\\left({0:s}\\right)",1,complex.real)
|
||||
core.addFn('im',"re({0:s})","\\Im\\left({0:s}\\right)",1,complex.imag)
|
||||
core.addFn('sqrt',"sqrt({0:s})","\\sqrt{{{0:s}}}",1,math.sqrt)
|
||||
core.addConst("pi",math.pi)
|
||||
core.addConst("e",math.e)
|
||||
core.addConst("Inf",float("Inf"))
|
||||
core.addConst("NaN",float("NaN"))
|
||||
if has_scipy:
|
||||
core.addConst("h",scipy.constants.h)
|
||||
core.addConst("hbar",scipy.constants.hbar)
|
||||
core.addConst("m_e",scipy.constants.m_e)
|
||||
core.addConst("m_p",scipy.constants.m_p)
|
||||
core.addConst("m_n",scipy.constants.m_n)
|
||||
core.addConst("c",scipy.constants.c)
|
||||
core.addConst("N_A",scipy.constants.N_A)
|
||||
core.addConst("mu_0",scipy.constants.mu_0)
|
||||
core.addConst("eps_0",scipy.constants.epsilon_0)
|
||||
core.addConst("k",scipy.constants.k)
|
||||
core.addConst("G",scipy.constants.G)
|
||||
core.addConst("g",scipy.constants.g)
|
||||
core.addConst("q",scipy.constants.e)
|
||||
core.addConst("R",scipy.constants.R)
|
||||
core.addConst("sigma",scipy.constants.e)
|
||||
core.addConst("Rb",scipy.constants.Rydberg)
|
@ -0,0 +1,49 @@
|
||||
_tol = 1e-5
|
||||
|
||||
def sim(a,b):
|
||||
if (a==b):
|
||||
return True
|
||||
elif a == 0 or b == 0:
|
||||
return False
|
||||
if (a<b):
|
||||
return (1-a/b)<=_tol
|
||||
else:
|
||||
return (1-b/a)<=_tol
|
||||
|
||||
def nsim(a,b):
|
||||
if (a==b):
|
||||
return False
|
||||
elif a == 0 or b == 0:
|
||||
return True
|
||||
if (a<b):
|
||||
return (1-a/b)>_tol
|
||||
else:
|
||||
return (1-b/a)>_tol
|
||||
|
||||
def gsim(a,b):
|
||||
if a >= b:
|
||||
return True
|
||||
return (1-a/b)<=_tol
|
||||
|
||||
def lsim(a,b):
|
||||
if a <= b:
|
||||
return True
|
||||
return (1-b/a)<=_tol
|
||||
|
||||
def set_tol(value=1e-5):
|
||||
r"""Set Error Tolerance
|
||||
|
||||
Set the tolerance for detriming if two numbers are simliar, i.e
|
||||
:math:`\left|\frac{a}{b}\right| = 1 \pm tolerance`
|
||||
|
||||
Parameters
|
||||
----------
|
||||
value: float
|
||||
The Value to set the tolerance to show be very small as it respresents the
|
||||
percentage of acceptable error in detriming if two values are the same.
|
||||
"""
|
||||
global _tol
|
||||
if isinstance(value,float):
|
||||
_tol = value
|
||||
else:
|
||||
raise TypeError(type(value))
|
@ -0,0 +1,51 @@
|
||||
import re
|
||||
from decimal import Decimal
|
||||
from functools import reduce
|
||||
|
||||
class RegexInplaceParser(object):
|
||||
|
||||
def __init__(self, string):
|
||||
|
||||
self.string = string
|
||||
|
||||
def add(self, string):
|
||||
while(len(re.findall("[+]{1}[-]?", string)) != 0):
|
||||
string = re.sub("[-]?\d+[.]?\d*[+]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x + y), [Decimal(i) for i in re.split("[+]{1}", re.search("[-]?\d+[.]?\d*[+]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
|
||||
return string
|
||||
|
||||
def sub(self, string):
|
||||
while(len(re.findall("\d+[.]?\d*[-]{1,2}\d+[.]?\d*", string)) != 0):
|
||||
g = re.search("\d+[.]?\d*[-]{1,2}\d+[.]?\d*", string).group()
|
||||
if(re.search("[-]{1,2}", g).group() == "-"):
|
||||
r = re.sub("[-]{1}", "+-", g, 1)
|
||||
string = re.sub(g, r, string, 1)
|
||||
elif(re.search("[-]{1,2}", g).group() == "--"):
|
||||
r = re.sub("[-]{2}", "+", g, 1)
|
||||
string = re.sub(g, r, string, 1)
|
||||
else:
|
||||
pass
|
||||
return string
|
||||
|
||||
def mul(self, string):
|
||||
while(len(re.findall("[*]{1}[-]?", string)) != 0):
|
||||
string = re.sub("[-]?\d+[.]?\d*[*]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x * y), [Decimal(i) for i in re.split("[*]{1}", re.search("[-]?\d+[.]?\d*[*]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
|
||||
return string
|
||||
|
||||
def div(self, string):
|
||||
while(len(re.findall("[/]{1}[-]?", string)) != 0):
|
||||
string = re.sub("[-]?\d+[.]?\d*[/]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x / y), [Decimal(i) for i in re.split("[/]{1}", re.search("[-]?\d+[.]?\d*[/]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
|
||||
return string
|
||||
|
||||
def exp(self, string):
|
||||
while(len(re.findall("[\^]{1}[-]?", string)) != 0):
|
||||
string = re.sub("[-]?\d+[.]?\d*[\^]{1}[-]?\d+[.]?\d*", str("%f" % reduce((lambda x, y: x ** y), [Decimal(i) for i in re.split("[\^]{1}", re.search("[-]?\d+[.]?\d*[\^]{1}[-]?\d+[.]?\d*", string).group())])), string, 1)
|
||||
return string
|
||||
|
||||
def evaluate(self):
|
||||
string = self.string
|
||||
string = self.exp(string)
|
||||
string = self.div(string)
|
||||
string = self.mul(string)
|
||||
string = self.sub(string)
|
||||
string = self.add(string)
|
||||
return string
|
34
analysis-master/tra_analysis/equation/parser/__init__.py
Normal file
34
analysis-master/tra_analysis/equation/parser/__init__.py
Normal file
@ -0,0 +1,34 @@
|
||||
# Titan Robotics Team 2022: Expression submodule
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this should be imported as a python module using 'from tra_analysis.Equation import parser'
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.4-alpha"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
0.0.4-alpha:
|
||||
- moved individual parsers to their own files
|
||||
0.0.3-alpha:
|
||||
- readded old regex based parser as RegexInplaceParser
|
||||
0.0.2-alpha:
|
||||
- wrote BNF using pyparsing and uses a BNF metasyntax
|
||||
- renamed this submodule parser
|
||||
0.0.1-alpha:
|
||||
- took items from equation.ipynb and ported here
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
__all__ = {
|
||||
"BNF",
|
||||
"RegexInplaceParser",
|
||||
"HybridExpressionParser"
|
||||
}
|
||||
|
||||
from .BNF import BNF as BNF
|
||||
from .RegexInplaceParser import RegexInplaceParser as RegexInplaceParser
|
||||
from .Hybrid import HybridExpressionParser
|
||||
from .Hybrid_Utils import equation_base, Core
|
21
analysis-master/tra_analysis/equation/parser/py2.py
Normal file
21
analysis-master/tra_analysis/equation/parser/py2.py
Normal file
@ -0,0 +1,21 @@
|
||||
# Titan Robotics Team 2022: py2 module
|
||||
# Written by Arthur Lu
|
||||
# Notes:
|
||||
# this module should only be used internally, contains old python 2.X functions that have been removed.
|
||||
# setup:
|
||||
|
||||
from __future__ import division
|
||||
|
||||
__version__ = "1.0.0"
|
||||
|
||||
__changelog__ = """changelog:
|
||||
1.0.0:
|
||||
- added cmp function
|
||||
"""
|
||||
|
||||
__author__ = (
|
||||
"Arthur Lu <learthurgo@gmail.com>",
|
||||
)
|
||||
|
||||
def cmp(a, b):
|
||||
return (a > b) - (a < b)
|
46
data-analysis/design.kv
Normal file
46
data-analysis/design.kv
Normal file
@ -0,0 +1,46 @@
|
||||
<HomeScreen>:
|
||||
GridLayout:
|
||||
cols: 1
|
||||
GridLayout:
|
||||
cols: 1
|
||||
padding: 15, 15
|
||||
spacing: 20, 20
|
||||
Label:
|
||||
text: "User Login"
|
||||
font_size: "20sp"
|
||||
TextInput:
|
||||
id: username
|
||||
hint_text: "Username"
|
||||
TextInput:
|
||||
id: password
|
||||
password: True
|
||||
hint_text: "Password"
|
||||
RelativeLayout:
|
||||
Button:
|
||||
text: "Login"
|
||||
on_press: root.login(root.ids.username.text, root.ids.password.text)
|
||||
size_hint: 0.3, 0.5
|
||||
pos_hint: {"center_x": 0.5, "center_y": 0.6}
|
||||
Label:
|
||||
id: login_wrong
|
||||
text: ""
|
||||
GridLayout:
|
||||
cols: 2
|
||||
size_hint: 0.2, 0.2
|
||||
padding: 10, 10
|
||||
spacing: 10, 0
|
||||
Button:
|
||||
text: "Forgot Password?"
|
||||
background_color: 1, 1, 1, 0
|
||||
opacity: 1 if self.state == "normal" else 0.5
|
||||
color: 0.1, 0.7, 1, 1
|
||||
Button:
|
||||
text: "Sign Up"
|
||||
on_press: root.sign_up()
|
||||
background_color: 1, 1, 1 , 0
|
||||
opacity: 1 if self.state == "normal" else 0.5
|
||||
color: 0.1, 0.7, 1, 1
|
||||
|
||||
<RootWidget>:
|
||||
HomeScreen:
|
||||
name: "home_screen"
|
41
data-analysis/main.py
Normal file
41
data-analysis/main.py
Normal file
@ -0,0 +1,41 @@
|
||||
from kivy.app import App
|
||||
from kivy.lang import Builder
|
||||
from kivy.uix.screenmanager import ScreenManager , Screen
|
||||
from kivy.animation import Animation
|
||||
from hoverable import HoverBehavior
|
||||
from kivy.uix.image import Image
|
||||
from kivy.uix.behaviors import ButtonBehavior
|
||||
import json
|
||||
from datetime import datetime
|
||||
import glob
|
||||
from pathlib import Path
|
||||
import random
|
||||
|
||||
import superscript as ss
|
||||
|
||||
Builder.load_file('design.kv')
|
||||
|
||||
class HomeScreen(Screen):
|
||||
# def sign_up(self):
|
||||
# self.manager.transition.direction = "left"
|
||||
# self.manager.current = "sign_up_screen"
|
||||
|
||||
# def login(self, uname, pword):
|
||||
# with open ("users.json") as file:
|
||||
# users = json.load(file)
|
||||
# if uname in users and users[uname]["password"] == pword:
|
||||
# self.manager.transition.direction = "left"
|
||||
# self.manager.current = "login_screen_success"
|
||||
# else:
|
||||
# self.ids.login_wrong.text = "Incorrect Username or Password"
|
||||
|
||||
|
||||
class RootWidget(ScreenManager):
|
||||
pass
|
||||
|
||||
class MainApp(App):
|
||||
def build(self):
|
||||
return RootWidget()
|
||||
|
||||
if __name__ == "__main__":
|
||||
MainApp().run()
|
@ -1,4 +1,5 @@
|
||||
requests
|
||||
pymongo
|
||||
pandas
|
||||
tra-analysis
|
||||
tra-analysis
|
||||
kivy==2.0.0rc2
|
Loading…
Reference in New Issue
Block a user