mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 01:29:10 +00:00
Merge pull request #46 from titanscouting/multithread-testing
Implement Multithreading in Superscript
This commit is contained in:
commit
30f5687622
@ -1,6 +1,7 @@
|
|||||||
{
|
{
|
||||||
|
"max-threads": 0.5,
|
||||||
"team": "",
|
"team": "",
|
||||||
"competition": "2020ilch",
|
"competition": "",
|
||||||
"key":{
|
"key":{
|
||||||
"database":"",
|
"database":"",
|
||||||
"tba":""
|
"tba":""
|
||||||
|
@ -2,3 +2,4 @@ requests
|
|||||||
pymongo
|
pymongo
|
||||||
pandas
|
pandas
|
||||||
dnspython
|
dnspython
|
||||||
|
tra-analysis
|
@ -3,10 +3,18 @@
|
|||||||
# Notes:
|
# Notes:
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "0.7.0"
|
__version__ = "0.8.2"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
0.8.2:
|
||||||
|
- readded while true to main function
|
||||||
|
- added more thread config options
|
||||||
|
0.8.1:
|
||||||
|
- optimized matchloop further by bypassing GIL
|
||||||
|
0.8.0:
|
||||||
|
- added multithreading to matchloop
|
||||||
|
- tweaked user log
|
||||||
0.7.0:
|
0.7.0:
|
||||||
- finished implementing main function
|
- finished implementing main function
|
||||||
0.6.2:
|
0.6.2:
|
||||||
@ -114,16 +122,25 @@ __all__ = [
|
|||||||
|
|
||||||
from tra_analysis import analysis as an
|
from tra_analysis import analysis as an
|
||||||
import data as d
|
import data as d
|
||||||
|
from collections import defaultdict
|
||||||
import json
|
import json
|
||||||
|
import math
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import os
|
||||||
from os import system, name
|
from os import system, name
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from multiprocessing import Pool
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
import time
|
import time
|
||||||
import warnings
|
import warnings
|
||||||
|
|
||||||
|
global exec_threads
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
|
||||||
|
global exec_threads
|
||||||
|
|
||||||
warnings.filterwarnings("ignore")
|
warnings.filterwarnings("ignore")
|
||||||
|
|
||||||
while (True):
|
while (True):
|
||||||
@ -138,6 +155,23 @@ def main():
|
|||||||
metrics_tests = config["statistics"]["metric"]
|
metrics_tests = config["statistics"]["metric"]
|
||||||
print("[OK] configs loaded")
|
print("[OK] configs loaded")
|
||||||
|
|
||||||
|
print("[OK] starting threads")
|
||||||
|
cfg_max_threads = config["max-threads"]
|
||||||
|
sys_max_threads = os.cpu_count()
|
||||||
|
if cfg_max_threads > -sys_max_threads and cfg_max_threads < 0 :
|
||||||
|
alloc_processes = sys_max_threads + cfg_max_threads
|
||||||
|
elif cfg_max_threads > 0 and cfg_max_threads < 1:
|
||||||
|
alloc_processes = math.floor(cfg_max_threads * sys_max_threads)
|
||||||
|
elif cfg_max_threads > 1 and cfg_max_threads <= sys_max_threads:
|
||||||
|
alloc_processes = cfg_max_threads
|
||||||
|
elif cfg_max_threads == 0:
|
||||||
|
alloc_processes = sys_max_threads
|
||||||
|
else:
|
||||||
|
print("[Err] Invalid number of processes, must be between -" + str(sys_max_threads) + " and " + str(sys_max_threads))
|
||||||
|
exit()
|
||||||
|
exec_threads = Pool(processes = alloc_processes)
|
||||||
|
print("[OK] " + str(alloc_processes) + " threads started")
|
||||||
|
|
||||||
apikey = config["key"]["database"]
|
apikey = config["key"]["database"]
|
||||||
tbakey = config["key"]["tba"]
|
tbakey = config["key"]["tba"]
|
||||||
print("[OK] loaded keys")
|
print("[OK] loaded keys")
|
||||||
@ -151,15 +185,15 @@ def main():
|
|||||||
pit_data = load_pit(apikey, competition)
|
pit_data = load_pit(apikey, competition)
|
||||||
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
print("[OK] loaded data in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
print("[OK] running tests")
|
print("[OK] running match stats")
|
||||||
start = time.time()
|
start = time.time()
|
||||||
matchloop(apikey, competition, match_data, match_tests)
|
matchloop(apikey, competition, match_data, match_tests)
|
||||||
print("[OK] finished tests in " + str(time.time() - start) + " seconds")
|
print("[OK] finished match stats in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
print("[OK] running metrics")
|
print("[OK] running team metrics")
|
||||||
start = time.time()
|
start = time.time()
|
||||||
metricloop(tbakey, apikey, competition, previous_time, metrics_tests)
|
metricloop(tbakey, apikey, competition, previous_time, metrics_tests)
|
||||||
print("[OK] finished metrics in " + str(time.time() - start) + " seconds")
|
print("[OK] finished team metrics in " + str(time.time() - start) + " seconds")
|
||||||
|
|
||||||
print("[OK] running pit analysis")
|
print("[OK] running pit analysis")
|
||||||
start = time.time()
|
start = time.time()
|
||||||
@ -217,48 +251,78 @@ def load_match(apikey, competition):
|
|||||||
|
|
||||||
return d.get_match_data_formatted(apikey, competition)
|
return d.get_match_data_formatted(apikey, competition)
|
||||||
|
|
||||||
|
def simplestats(data_test):
|
||||||
|
|
||||||
|
data = np.array(data_test[0])
|
||||||
|
data = data[np.isfinite(data)]
|
||||||
|
ranges = list(range(len(data)))
|
||||||
|
|
||||||
|
test = data_test[1]
|
||||||
|
|
||||||
|
if test == "basic_stats":
|
||||||
|
return an.basic_stats(data)
|
||||||
|
|
||||||
|
if test == "historical_analysis":
|
||||||
|
return an.histo_analysis([ranges, data])
|
||||||
|
|
||||||
|
if test == "regression_linear":
|
||||||
|
return an.regression(ranges, data, ['lin'])
|
||||||
|
|
||||||
|
if test == "regression_logarithmic":
|
||||||
|
return an.regression(ranges, data, ['log'])
|
||||||
|
|
||||||
|
if test == "regression_exponential":
|
||||||
|
return an.regression(ranges, data, ['exp'])
|
||||||
|
|
||||||
|
if test == "regression_polynomial":
|
||||||
|
return an.regression(ranges, data, ['ply'])
|
||||||
|
|
||||||
|
if test == "regression_sigmoidal":
|
||||||
|
return an.regression(ranges, data, ['sig'])
|
||||||
|
|
||||||
def matchloop(apikey, competition, data, tests): # expects 3D array with [Team][Variable][Match]
|
def matchloop(apikey, competition, data, tests): # expects 3D array with [Team][Variable][Match]
|
||||||
|
|
||||||
def simplestats(data, test):
|
global exec_threads
|
||||||
|
|
||||||
data = np.array(data)
|
class AutoVivification(dict):
|
||||||
data = data[np.isfinite(data)]
|
def __getitem__(self, item):
|
||||||
ranges = list(range(len(data)))
|
try:
|
||||||
|
return dict.__getitem__(self, item)
|
||||||
if test == "basic_stats":
|
except KeyError:
|
||||||
return an.basic_stats(data)
|
value = self[item] = type(self)()
|
||||||
|
return value
|
||||||
if test == "historical_analysis":
|
|
||||||
return an.histo_analysis([ranges, data])
|
|
||||||
|
|
||||||
if test == "regression_linear":
|
|
||||||
return an.regression(ranges, data, ['lin'])
|
|
||||||
|
|
||||||
if test == "regression_logarithmic":
|
|
||||||
return an.regression(ranges, data, ['log'])
|
|
||||||
|
|
||||||
if test == "regression_exponential":
|
|
||||||
return an.regression(ranges, data, ['exp'])
|
|
||||||
|
|
||||||
if test == "regression_polynomial":
|
|
||||||
return an.regression(ranges, data, ['ply'])
|
|
||||||
|
|
||||||
if test == "regression_sigmoidal":
|
|
||||||
return an.regression(ranges, data, ['sig'])
|
|
||||||
|
|
||||||
return_vector = {}
|
return_vector = {}
|
||||||
|
|
||||||
|
team_filtered = []
|
||||||
|
variable_filtered = []
|
||||||
|
variable_data = []
|
||||||
|
test_filtered = []
|
||||||
|
result_filtered = []
|
||||||
|
return_vector = AutoVivification()
|
||||||
|
|
||||||
for team in data:
|
for team in data:
|
||||||
variable_vector = {}
|
|
||||||
for variable in data[team]:
|
for variable in data[team]:
|
||||||
test_vector = {}
|
|
||||||
variable_data = data[team][variable]
|
|
||||||
if variable in tests:
|
if variable in tests:
|
||||||
|
|
||||||
for test in tests[variable]:
|
for test in tests[variable]:
|
||||||
test_vector[test] = simplestats(variable_data, test)
|
|
||||||
else:
|
team_filtered.append(team)
|
||||||
pass
|
variable_filtered.append(variable)
|
||||||
variable_vector[variable] = test_vector
|
variable_data.append((data[team][variable], test))
|
||||||
return_vector[team] = variable_vector
|
test_filtered.append(test)
|
||||||
|
|
||||||
|
result_filtered = exec_threads.map(simplestats, variable_data)
|
||||||
|
i = 0
|
||||||
|
|
||||||
|
result_filtered = list(result_filtered)
|
||||||
|
|
||||||
|
for result in result_filtered:
|
||||||
|
|
||||||
|
return_vector[team_filtered[i]][variable_filtered[i]][test_filtered[i]] = result
|
||||||
|
i += 1
|
||||||
|
|
||||||
push_match(apikey, competition, return_vector)
|
push_match(apikey, competition, return_vector)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user