superscript v 0.0.0.005

This commit is contained in:
art 2020-02-19 19:51:45 -06:00
parent de9d151ad6
commit 2e09cba94e

View File

@ -3,10 +3,13 @@
# Notes:
# setup:
__version__ = "0.0.0.004"
__version__ = "0.0.0.005"
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
0.0.0.005:
- imported pickle
- created custom database object
0.0.0.004:
- fixed simpleloop to actually return a vector
0.0.0.003:
@ -31,6 +34,7 @@ __all__ = [
from analysis import analysis as an
from numba import jit
import numpy as np
import pickle
try:
from analysis import trueskill as Trueskill
except:
@ -88,7 +92,74 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
return return_vector
def metricsloop(team_lookup, data, tests): # expects array with [Match] ([Teams], [Win/Loss])
class database:
data = {}
elo_starting_score = 1500
N = 1500
K = 32
gl2_starting_score = 1500
gl2_starting_rd = 350
gl2_starting_vol = 0.06
def __init__(self, team_lookup):
super().__init__()
for team in team_lookup:
elo = elo_starting_score
gl2 = {"score": gl2_starting_score, "rd": gl2_starting_rd, "vol": gl2_starting_vol}
ts = Trueskill.Rating()
data[str(team)] = {"elo": elo, "gl2": gl2, "ts": ts}
def get_team(self, team):
return data[team]
def get_elo(self, team):
return data[team]["elo"]
def get_gl2(self, team):
return data[team]["gl2"]
def get_ts(self, team):
return data[team]["ts"]
def set_team(self, team, ndata):
data[team] = ndata
def set_elo(self, team, nelo):
data[team]["elo"] = nelo
def set_gl2(self, team, ngl2):
data[team]["gl2"] = ngl2
def set_ts(self, team, nts):
data[team]["ts"] = nts
def save_database(self, location):
pickle.dump(data, open(location, "wb"))
def load_database(self, location):
data = pickle.load(open(location, "rb"))
def metricsloop(group_data, observations, database, tests):
pass
def metricsloop_dumb(team_lookup, data, tests): # expects array with [Match] ([Teams], [Win/Loss])
scores = []
@ -111,6 +182,19 @@ def metricsloop(team_lookup, data, tests): # expects array with [Match] ([Teams]
for match in data:
groups = data[0]
for group in groups:
group_vector = []
for team in group:
group_vector.append(scores[team])
group_ratings.append(group_vector)
observations = data[1]
new_group_ratings = []
main()