mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-13 22:56:18 +00:00
analysis.py v 1.1.6.000
This commit is contained in:
parent
f12cbcc847
commit
2cf7d73c9c
@ -7,10 +7,14 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.5.001"
|
__version__ = "1.1.6.000"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.6.000:
|
||||||
|
- fixed __version__
|
||||||
|
- fixed __all__ order
|
||||||
|
- added decisiontree()
|
||||||
1.1.5.003:
|
1.1.5.003:
|
||||||
- added pca
|
- added pca
|
||||||
1.1.5.002:
|
1.1.5.002:
|
||||||
@ -178,11 +182,12 @@ __all__ = [
|
|||||||
'elo',
|
'elo',
|
||||||
'gliko2',
|
'gliko2',
|
||||||
'trueskill',
|
'trueskill',
|
||||||
'kmeans',
|
|
||||||
'pca',
|
|
||||||
'r_squared',
|
'r_squared',
|
||||||
'mse',
|
'mse',
|
||||||
'rms',
|
'rms',
|
||||||
|
'kmeans',
|
||||||
|
'pca',
|
||||||
|
'decisiontree',
|
||||||
'Regression',
|
'Regression',
|
||||||
'Gliko2',
|
'Gliko2',
|
||||||
# all statistics functions left out due to integration in other functions
|
# all statistics functions left out due to integration in other functions
|
||||||
@ -386,6 +391,15 @@ def pca(data, kernel = sklearn.decomposition.PCA(n_components=2)):
|
|||||||
|
|
||||||
return kernel.fit_transform(data)
|
return kernel.fit_transform(data)
|
||||||
|
|
||||||
|
def decisiontree(data, labels, test_size = 0.3): #expects 2d data and 1d labels
|
||||||
|
|
||||||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||||
|
model = sklearn.tree.DecisionTreeClassifier()
|
||||||
|
model = model.fit(data_train,labels_train)
|
||||||
|
predictions = model.predict(data_test)
|
||||||
|
accuracy = sklearn.metrics.accuracy_score(labels_test, predictions)
|
||||||
|
return model, accuracy
|
||||||
|
|
||||||
class Regression:
|
class Regression:
|
||||||
|
|
||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
|
Loading…
Reference in New Issue
Block a user