diff --git a/data analysis/analysis/.ipynb_checkpoints/analysis-checkpoint.py b/data analysis/analysis/.ipynb_checkpoints/analysis-checkpoint.py new file mode 100644 index 00000000..40c12eac --- /dev/null +++ b/data analysis/analysis/.ipynb_checkpoints/analysis-checkpoint.py @@ -0,0 +1,952 @@ +# Titan Robotics Team 2022: Data Analysis Module +# Written by Arthur Lu & Jacob Levine +# Notes: +# this should be imported as a python module using 'import analysis' +# this should be included in the local directory or environment variable +# this module has been optimized for multhreaded computing +# current benchmark of optimization: 1.33 times faster +# setup: + +__version__ = "1.1.12.003" + +# changelog should be viewed using print(analysis.__changelog__) +__changelog__ = """changelog: + 1.1.12.003: + - removed depreciated code + 1.1.12.002: + - removed team first time trueskill instantiation in favor of integration in superscript.py + 1.1.12.001: + - improved readibility of regression outputs by stripping tensor data + - used map with lambda to acheive the improved readibility + - lost numba jit support with regression, and generated_jit hangs at execution + - TODO: reimplement correct numba integration in regression + 1.1.12.000: + - temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures + 1.1.11.010: + - alphabeticaly ordered import lists + 1.1.11.009: + - bug fixes + 1.1.11.008: + - bug fixes + 1.1.11.007: + - bug fixes + 1.1.11.006: + - tested min and max + - bug fixes + 1.1.11.005: + - added min and max in basic_stats + 1.1.11.004: + - bug fixes + 1.1.11.003: + - bug fixes + 1.1.11.002: + - consolidated metrics + - fixed __all__ + 1.1.11.001: + - added test/train split to RandomForestClassifier and RandomForestRegressor + 1.1.11.000: + - added RandomForestClassifier and RandomForestRegressor + - note: untested + 1.1.10.000: + - added numba.jit to remaining functions + 1.1.9.002: + - kernelized PCA and KNN + 1.1.9.001: + - fixed bugs with SVM and NaiveBayes + 1.1.9.000: + - added SVM class, subclasses, and functions + - note: untested + 1.1.8.000: + - added NaiveBayes classification engine + - note: untested + 1.1.7.000: + - added knn() + - added confusion matrix to decisiontree() + 1.1.6.002: + - changed layout of __changelog to be vscode friendly + 1.1.6.001: + - added additional hyperparameters to decisiontree() + 1.1.6.000: + - fixed __version__ + - fixed __all__ order + - added decisiontree() + 1.1.5.003: + - added pca + 1.1.5.002: + - reduced import list + - added kmeans clustering engine + 1.1.5.001: + - simplified regression by using .to(device) + 1.1.5.000: + - added polynomial regression to regression(); untested + 1.1.4.000: + - added trueskill() + 1.1.3.002: + - renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2 + 1.1.3.001: + - changed glicko2() to return tuple instead of array + 1.1.3.000: + - added glicko2_engine class and glicko() + - verified glicko2() accuracy + 1.1.2.003: + - fixed elo() + 1.1.2.002: + - added elo() + - elo() has bugs to be fixed + 1.1.2.001: + - readded regrression import + 1.1.2.000: + - integrated regression.py as regression class + - removed regression import + - fixed metadata for regression class + - fixed metadata for analysis class + 1.1.1.001: + - regression_engine() bug fixes, now actaully regresses + 1.1.1.000: + - added regression_engine() + - added all regressions except polynomial + 1.1.0.007: + - updated _init_device() + 1.1.0.006: + - removed useless try statements + 1.1.0.005: + - removed impossible outcomes + 1.1.0.004: + - added performance metrics (r^2, mse, rms) + 1.1.0.003: + - resolved nopython mode for mean, median, stdev, variance + 1.1.0.002: + - snapped (removed) majority of uneeded imports + - forced object mode (bad) on all jit + - TODO: stop numba complaining about not being able to compile in nopython mode + 1.1.0.001: + - removed from sklearn import * to resolve uneeded wildcard imports + 1.1.0.000: + - removed c_entities,nc_entities,obstacles,objectives from __all__ + - applied numba.jit to all functions + - depreciated and removed stdev_z_split + - cleaned up histo_analysis to include numpy and numba.jit optimizations + - depreciated and removed all regression functions in favor of future pytorch optimizer + - depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data) + - optimized z_normalize using sklearn.preprocessing.normalize + - TODO: implement kernel/function based pytorch regression optimizer + 1.0.9.000: + - refactored + - numpyed everything + - removed stats in favor of numpy functions + 1.0.8.005: + - minor fixes + 1.0.8.004: + - removed a few unused dependencies + 1.0.8.003: + - added p_value function + 1.0.8.002: + - updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001 + 1.0.8.001: + - refactors + - bugfixes + 1.0.8.000: + - depreciated histo_analysis_old + - depreciated debug + - altered basic_analysis to take array data instead of filepath + - refactor + - optimization + 1.0.7.002: + - bug fixes + 1.0.7.001: + - bug fixes + 1.0.7.000: + - added tanh_regression (logistical regression) + - bug fixes + 1.0.6.005: + - added z_normalize function to normalize dataset + - bug fixes + 1.0.6.004: + - bug fixes + 1.0.6.003: + - bug fixes + 1.0.6.002: + - bug fixes + 1.0.6.001: + - corrected __all__ to contain all of the functions + 1.0.6.000: + - added calc_overfit, which calculates two measures of overfit, error and performance + - added calculating overfit to optimize_regression + 1.0.5.000: + - added optimize_regression function, which is a sample function to find the optimal regressions + - optimize_regression function filters out some overfit funtions (functions with r^2 = 1) + - planned addition: overfit detection in the optimize_regression function + 1.0.4.002: + - added __changelog__ + - updated debug function with log and exponential regressions + 1.0.4.001: + - added log regressions + - added exponential regressions + - added log_regression and exp_regression to __all__ + 1.0.3.008: + - added debug function to further consolidate functions + 1.0.3.007: + - added builtin benchmark function + - added builtin random (linear) data generation function + - added device initialization (_init_device) + 1.0.3.006: + - reorganized the imports list to be in alphabetical order + - added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives + 1.0.3.005: + - major bug fixes + - updated historical analysis + - depreciated old historical analysis + 1.0.3.004: + - added __version__, __author__, __all__ + - added polynomial regression + - added root mean squared function + - added r squared function + 1.0.3.003: + - bug fixes + - added c_entities + 1.0.3.002: + - bug fixes + - added nc_entities, obstacles, objectives + - consolidated statistics.py to analysis.py + 1.0.3.001: + - compiled 1d, column, and row basic stats into basic stats function + 1.0.3.000: + - added historical analysis function + 1.0.2.xxx: + - added z score test + 1.0.1.xxx: + - major bug fixes + 1.0.0.xxx: + - added loading csv + - added 1d, column, row basic stats +""" + +__author__ = ( + "Arthur Lu ", + "Jacob Levine ", +) + +__all__ = [ + '_init_device', + 'load_csv', + 'basic_stats', + 'z_score', + 'z_normalize', + 'histo_analysis', + 'regression', + 'elo', + 'gliko2', + 'trueskill', + 'RegressionMetrics', + 'ClassificationMetrics', + 'kmeans', + 'pca', + 'decisiontree', + 'knn_classifier', + 'knn_regressor', + 'NaiveBayes', + 'SVM', + 'random_forest_classifier', + 'random_forest_regressor', + 'Regression', + 'Gliko2', + # all statistics functions left out due to integration in other functions +] + +# now back to your regularly scheduled programming: + +# imports (now in alphabetical order! v 1.0.3.006): + +import csv +import numba +from numba import jit +import numpy as np +import math +import sklearn +from sklearn import * +import torch +try: + from analysis import trueskill as Trueskill +except: + import trueskill as Trueskill + +class error(ValueError): + pass + +def _init_device(): # initiates computation device for ANNs + device = 'cuda:0' if torch.cuda.is_available() else 'cpu' + return device + +def load_csv(filepath): + with open(filepath, newline='') as csvfile: + file_array = np.array(list(csv.reader(csvfile))) + csvfile.close() + return file_array + +# expects 1d array +@jit(forceobj=True) +def basic_stats(data): + + data_t = np.array(data).astype(float) + + _mean = mean(data_t) + _median = median(data_t) + _stdev = stdev(data_t) + _variance = variance(data_t) + _min = npmin(data_t) + _max = npmax(data_t) + + return _mean, _median, _stdev, _variance, _min, _max + +# returns z score with inputs of point, mean and standard deviation of spread +@jit(forceobj=True) +def z_score(point, mean, stdev): + score = (point - mean) / stdev + + return score + +# expects 2d array, normalizes across all axes +@jit(forceobj=True) +def z_normalize(array, *args): + + array = np.array(array) + for arg in args: + array = sklearn.preprocessing.normalize(array, axis = arg) + + return array + +@jit(forceobj=True) +# expects 2d array of [x,y] +def histo_analysis(hist_data): + + hist_data = np.array(hist_data) + derivative = np.array(len(hist_data) - 1, dtype = float) + t = np.diff(hist_data) + derivative = t[1] / t[0] + np.sort(derivative) + + return basic_stats(derivative)[0], basic_stats(derivative)[3] + +def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array + + regressions = [] + Regression().set_device(ndevice) + + if 'lin' in args: # formula: ax + b + + model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True) + params = model[0].parameters + params[:] = map(lambda x: x.item(), params) + regressions.append((params, model[1][::-1][0])) + + if 'log' in args: # formula: a log (b(x + c)) + d + + model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True) + params = model[0].parameters + params[:] = map(lambda x: x.item(), params) + regressions.append((params, model[1][::-1][0])) + + if 'exp' in args: # formula: a e ^ (b(x + c)) + d + + model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True) + params = model[0].parameters + params[:] = map(lambda x: x.item(), params) + regressions.append((params, model[1][::-1][0])) + + if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ... + + plys = [] + limit = len(outputs[0]) + + for i in range(2, limit): + + model = sklearn.preprocessing.PolynomialFeatures(degree = i) + model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression()) + model = model.fit(np.rot90(inputs), np.rot90(outputs)) + + params = model.steps[1][1].intercept_.tolist() + params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::]) + params.flatten() + params = params.tolist() + + plys.append(params) + + regressions.append(plys) + + if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x) + + model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True) + params = model[0].parameters + params[:] = map(lambda x: x.item(), params) + regressions.append((params, model[1][::-1][0])) + + return regressions + +@jit(nopython=True) +def elo(starting_score, opposing_score, observed, N, K): + + expected = 1/(1+10**((np.array(opposing_score) - starting_score)/N)) + + return starting_score + K*(np.sum(observed) - np.sum(expected)) + +@jit(forceobj=True) +def gliko2(starting_score, starting_rd, starting_vol, opposing_score, opposing_rd, observations): + + player = Gliko2(rating = starting_score, rd = starting_rd, vol = starting_vol) + + player.update_player([x for x in opposing_score], [x for x in opposing_rd], observations) + + return (player.rating, player.rd, player.vol) + +@jit(forceobj=True) +def trueskill(teams_data, observations): # teams_data is array of array of tuples ie. [[(mu, sigma), (mu, sigma), (mu, sigma)], [(mu, sigma), (mu, sigma), (mu, sigma)]] + + team_ratings = [] + + for team in teams_data: + team_temp = [] + for player in team: + player = Trueskill.Rating(player[0], player[1]) + team_temp.append(player) + team_ratings.append(team_temp) + + return Trueskill.rate(teams_data, observations) + +class RegressionMetrics(): + + def __new__(cls, predictions, targets): + + return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets) + + def r_squared(self, predictions, targets): # assumes equal size inputs + + return sklearn.metrics.r2_score(targets, predictions) + + def mse(self, predictions, targets): + + return sklearn.metrics.mean_squared_error(targets, predictions) + + def rms(self, predictions, targets): + + return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions)) + +class ClassificationMetrics(): + + def __new__(cls, predictions, targets): + + return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets) + + def cm(self, predictions, targets): + + return sklearn.metrics.confusion_matrix(targets, predictions) + + def cr(self, predictions, targets): + + return sklearn.metrics.classification_report(targets, predictions) + +@jit(nopython=True) +def mean(data): + + return np.mean(data) + +@jit(nopython=True) +def median(data): + + return np.median(data) + +@jit(nopython=True) +def stdev(data): + + return np.std(data) + +@jit(nopython=True) +def variance(data): + + return np.var(data) + +@jit(nopython=True) +def npmin(data): + + return np.amin(data) + +@jit(nopython=True) +def npmax(data): + + return np.amax(data) + +@jit(forceobj=True) +def kmeans(data, n_clusters=8, init="k-means++", n_init=10, max_iter=300, tol=0.0001, precompute_distances="auto", verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm="auto"): + + kernel = sklearn.cluster.KMeans(n_clusters = n_clusters, init = init, n_init = n_init, max_iter = max_iter, tol = tol, precompute_distances = precompute_distances, verbose = verbose, random_state = random_state, copy_x = copy_x, n_jobs = n_jobs, algorithm = algorithm) + kernel.fit(data) + predictions = kernel.predict(data) + centers = kernel.cluster_centers_ + + return centers, predictions + +@jit(forceobj=True) +def pca(data, n_components = None, copy = True, whiten = False, svd_solver = "auto", tol = 0.0, iterated_power = "auto", random_state = None): + + kernel = sklearn.decomposition.PCA(n_components = n_components, copy = copy, whiten = whiten, svd_solver = svd_solver, tol = tol, iterated_power = iterated_power, random_state = random_state) + + return kernel.fit_transform(data) + +@jit(forceobj=True) +def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "default", max_depth = None): #expects *2d data and 1d labels + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth) + model = model.fit(data_train,labels_train) + predictions = model.predict(data_test) + metrics = ClassificationMetrics(predictions, labels_test) + + return model, metrics + +@jit(forceobj=True) +def knn_classifier(data, labels, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, n_neighbors=5, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.neighbors.KNeighborsClassifier() + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + +def knn_regressor(data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None): + + data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1) + model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs) + model.fit(data_train, outputs_train) + predictions = model.predict(data_test) + + return model, RegressionMetrics(predictions, outputs_test) + +class NaiveBayes: + + def guassian(self, data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing) + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + + def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior) + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + + def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior) + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + + def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm) + model.fit(data_train, labels_train) + predictions = model.predict(data_test) + + return model, ClassificationMetrics(predictions, labels_test) + +class SVM: + + class CustomKernel: + + def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state): + + return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state) + + class StandardKernel: + + def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None): + + return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state) + + class PrebuiltKernel: + + class Linear: + + def __new__(cls): + + return sklearn.svm.SVC(kernel = 'linear') + + class Polynomial: + + def __new__(cls, power, r_bias): + + return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias) + + class RBF: + + def __new__(cls, gamma): + + return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma) + + class Sigmoid: + + def __new__(cls, r_bias): + + return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias) + + def fit(self, kernel, train_data, train_outputs): # expects *2d data, 1d labels or outputs + + return kernel.fit(train_data, train_outputs) + + def eval_classification(self, kernel, test_data, test_outputs): + + predictions = kernel.predict(test_data) + + return ClassificationMetrics(predictions, test_outputs) + + def eval_regression(self, kernel, test_data, test_outputs): + + predictions = kernel.predict(test_data) + + return RegressionMetrics(predictions, test_outputs) + +def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None): + + data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1) + kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight) + kernel.fit(data_train, labels_train) + predictions = kernel.predict(data_test) + + return kernel, ClassificationMetrics(predictions, labels_test) + +def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False): + + data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1) + kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start) + kernel.fit(data_train, outputs_train) + predictions = kernel.predict(data_test) + + return kernel, RegressionMetrics(predictions, outputs_test) + +class Regression: + + # Titan Robotics Team 2022: CUDA-based Regressions Module + # Written by Arthur Lu & Jacob Levine + # Notes: + # this module has been automatically inegrated into analysis.py, and should be callable as a class from the package + # this module is cuda-optimized and vectorized (except for one small part) + # setup: + + __version__ = "1.0.0.003" + + # changelog should be viewed using print(analysis.regression.__changelog__) + __changelog__ = """ + 1.0.0.003: + - bug fixes + 1.0.0.002: + -Added more parameters to log, exponential, polynomial + -Added SigmoidalRegKernelArthur, because Arthur apparently needs + to train the scaling and shifting of sigmoids + + 1.0.0.001: + -initial release, with linear, log, exponential, polynomial, and sigmoid kernels + -already vectorized (except for polynomial generation) and CUDA-optimized + """ + + __author__ = ( + "Jacob Levine ", + "Arthur Lu " + ) + + __all__ = [ + 'factorial', + 'take_all_pwrs', + 'num_poly_terms', + 'set_device', + 'LinearRegKernel', + 'SigmoidalRegKernel', + 'LogRegKernel', + 'PolyRegKernel', + 'ExpRegKernel', + 'SigmoidalRegKernelArthur', + 'SGDTrain', + 'CustomTrain' + ] + + global device + + device = "cuda:0" if torch.torch.cuda.is_available() else "cpu" + + #todo: document completely + + def set_device(self, new_device): + device=new_device + + class LinearRegKernel(): + parameters= [] + weights=None + bias=None + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.bias] + def forward(self,mtx): + long_bias=self.bias.repeat([1,mtx.size()[1]]) + return torch.matmul(self.weights,mtx)+long_bias + + class SigmoidalRegKernel(): + parameters= [] + weights=None + bias=None + sigmoid=torch.nn.Sigmoid() + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.bias] + def forward(self,mtx): + long_bias=self.bias.repeat([1,mtx.size()[1]]) + return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias) + + class SigmoidalRegKernelArthur(): + parameters= [] + weights=None + in_bias=None + scal_mult=None + out_bias=None + sigmoid=torch.nn.Sigmoid() + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.in_bias=torch.rand(1, requires_grad=True, device=device) + self.scal_mult=torch.rand(1, requires_grad=True, device=device) + self.out_bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias] + def forward(self,mtx): + long_in_bias=self.in_bias.repeat([1,mtx.size()[1]]) + long_out_bias=self.out_bias.repeat([1,mtx.size()[1]]) + return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias + + class LogRegKernel(): + parameters= [] + weights=None + in_bias=None + scal_mult=None + out_bias=None + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.in_bias=torch.rand(1, requires_grad=True, device=device) + self.scal_mult=torch.rand(1, requires_grad=True, device=device) + self.out_bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias] + def forward(self,mtx): + long_in_bias=self.in_bias.repeat([1,mtx.size()[1]]) + long_out_bias=self.out_bias.repeat([1,mtx.size()[1]]) + return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias + + class ExpRegKernel(): + parameters= [] + weights=None + in_bias=None + scal_mult=None + out_bias=None + def __init__(self, num_vars): + self.weights=torch.rand(num_vars, requires_grad=True, device=device) + self.in_bias=torch.rand(1, requires_grad=True, device=device) + self.scal_mult=torch.rand(1, requires_grad=True, device=device) + self.out_bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias] + def forward(self,mtx): + long_in_bias=self.in_bias.repeat([1,mtx.size()[1]]) + long_out_bias=self.out_bias.repeat([1,mtx.size()[1]]) + return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias + + class PolyRegKernel(): + parameters= [] + weights=None + bias=None + power=None + def __init__(self, num_vars, power): + self.power=power + num_terms=self.num_poly_terms(num_vars, power) + self.weights=torch.rand(num_terms, requires_grad=True, device=device) + self.bias=torch.rand(1, requires_grad=True, device=device) + self.parameters=[self.weights,self.bias] + def num_poly_terms(self,num_vars, power): + if power == 0: + return 0 + return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1) + def factorial(self,n): + if n==0: + return 1 + else: + return n*self.factorial(n-1) + def take_all_pwrs(self, vec, pwr): + #todo: vectorize (kinda) + combins=torch.combinations(vec, r=pwr, with_replacement=True) + out=torch.ones(combins.size()[0]).to(device).to(torch.float) + for i in torch.t(combins).to(device).to(torch.float): + out *= i + if pwr == 1: + return out + else: + return torch.cat((out,self.take_all_pwrs(vec, pwr-1))) + def forward(self,mtx): + #TODO: Vectorize the last part + cols=[] + for i in torch.t(mtx): + cols.append(self.take_all_pwrs(i,self.power)) + new_mtx=torch.t(torch.stack(cols)) + long_bias=self.bias.repeat([1,mtx.size()[1]]) + return torch.matmul(self.weights,new_mtx)+long_bias + + def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False): + optim=torch.optim.SGD(kernel.parameters, lr=learning_rate) + data_cuda=data.to(device) + ground_cuda=ground.to(device) + if (return_losses): + losses=[] + for i in range(iterations): + with torch.set_grad_enabled(True): + optim.zero_grad() + pred=kernel.forward(data_cuda) + ls=loss(pred,ground_cuda) + losses.append(ls.item()) + ls.backward() + optim.step() + return [kernel,losses] + else: + for i in range(iterations): + with torch.set_grad_enabled(True): + optim.zero_grad() + pred=kernel.forward(data_cuda) + ls=loss(pred,ground_cuda) + ls.backward() + optim.step() + return kernel + + def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False): + data_cuda=data.to(device) + ground_cuda=ground.to(device) + if (return_losses): + losses=[] + for i in range(iterations): + with torch.set_grad_enabled(True): + optim.zero_grad() + pred=kernel.forward(data) + ls=loss(pred,ground) + losses.append(ls.item()) + ls.backward() + optim.step() + return [kernel,losses] + else: + for i in range(iterations): + with torch.set_grad_enabled(True): + optim.zero_grad() + pred=kernel.forward(data_cuda) + ls=loss(pred,ground_cuda) + ls.backward() + optim.step() + return kernel + +class Gliko2: + + _tau = 0.5 + + def getRating(self): + return (self.__rating * 173.7178) + 1500 + + def setRating(self, rating): + self.__rating = (rating - 1500) / 173.7178 + + rating = property(getRating, setRating) + + def getRd(self): + return self.__rd * 173.7178 + + def setRd(self, rd): + self.__rd = rd / 173.7178 + + rd = property(getRd, setRd) + + def __init__(self, rating = 1500, rd = 350, vol = 0.06): + + self.setRating(rating) + self.setRd(rd) + self.vol = vol + + def _preRatingRD(self): + + self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2)) + + def update_player(self, rating_list, RD_list, outcome_list): + + rating_list = [(x - 1500) / 173.7178 for x in rating_list] + RD_list = [x / 173.7178 for x in RD_list] + + v = self._v(rating_list, RD_list) + self.vol = self._newVol(rating_list, RD_list, outcome_list, v) + self._preRatingRD() + + self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v)) + + tempSum = 0 + for i in range(len(rating_list)): + tempSum += self._g(RD_list[i]) * \ + (outcome_list[i] - self._E(rating_list[i], RD_list[i])) + self.__rating += math.pow(self.__rd, 2) * tempSum + + + def _newVol(self, rating_list, RD_list, outcome_list, v): + + i = 0 + delta = self._delta(rating_list, RD_list, outcome_list, v) + a = math.log(math.pow(self.vol, 2)) + tau = self._tau + x0 = a + x1 = 0 + + while x0 != x1: + # New iteration, so x(i) becomes x(i-1) + x0 = x1 + d = math.pow(self.__rating, 2) + v + math.exp(x0) + h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \ + / d + 0.5 * math.exp(x0) * math.pow(delta / d, 2) + h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \ + (math.pow(self.__rating, 2) + v) \ + / math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \ + * (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3) + x1 = x0 - (h1 / h2) + + return math.exp(x1 / 2) + + def _delta(self, rating_list, RD_list, outcome_list, v): + + tempSum = 0 + for i in range(len(rating_list)): + tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i])) + return v * tempSum + + def _v(self, rating_list, RD_list): + + tempSum = 0 + for i in range(len(rating_list)): + tempE = self._E(rating_list[i], RD_list[i]) + tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE) + return 1 / tempSum + + def _E(self, p2rating, p2RD): + + return 1 / (1 + math.exp(-1 * self._g(p2RD) * \ + (self.__rating - p2rating))) + + def _g(self, RD): + + return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2)) + + def did_not_compete(self): + + self._preRatingRD() \ No newline at end of file diff --git a/data analysis/analysis/__pycache__/analysis.cpython-37.pyc b/data analysis/analysis/__pycache__/analysis.cpython-37.pyc index b1d064af..97b51845 100644 Binary files a/data analysis/analysis/__pycache__/analysis.cpython-37.pyc and b/data analysis/analysis/__pycache__/analysis.cpython-37.pyc differ