mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-26 22:55:56 +00:00
analysis.py v 1.2.0.005
This commit is contained in:
parent
98c48897e0
commit
29aa3787d6
@ -7,10 +7,18 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.2.0.004"
|
||||
__version__ = "1.2.0.005"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.2.0.005:
|
||||
- moved random_forrest_regressor and random_forrest_classifier to RandomForrest class
|
||||
- renamed Metrics to Metric
|
||||
- renamed RegressionMetrics to RegressionMetric
|
||||
- renamed ClassificationMetrics to ClassificationMetric
|
||||
- renamed CorrelationTests to CorrelationTest
|
||||
- renamed StatisticalTests to StatisticalTest
|
||||
- reflected rafactoring to all mentions of above classes/functions
|
||||
1.2.0.004:
|
||||
- fixed __all__ to reflected the correct functions and classes
|
||||
- fixed CorrelationTests and StatisticalTests class functions to require self invocation
|
||||
@ -282,19 +290,18 @@ __all__ = [
|
||||
'z_normalize',
|
||||
'histo_analysis',
|
||||
'regression',
|
||||
'Metrics',
|
||||
'RegressionMetrics',
|
||||
'ClassificationMetrics',
|
||||
'Metric',
|
||||
'RegressionMetric',
|
||||
'ClassificationMetric',
|
||||
'kmeans',
|
||||
'pca',
|
||||
'decisiontree',
|
||||
'KNN',
|
||||
'NaiveBayes',
|
||||
'SVM',
|
||||
'random_forest_classifier',
|
||||
'random_forest_regressor',
|
||||
'CorrelationTests',
|
||||
'StatisticalTests',
|
||||
'RandomForrest',
|
||||
'CorrelationTest',
|
||||
'StatisticalTest',
|
||||
# all statistics functions left out due to integration in other functions
|
||||
]
|
||||
|
||||
@ -470,7 +477,7 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
return regressions
|
||||
|
||||
class Metrics:
|
||||
class Metric:
|
||||
|
||||
def elo(self, starting_score, opposing_score, observed, N, K):
|
||||
|
||||
@ -497,7 +504,7 @@ class Metrics:
|
||||
|
||||
return Trueskill.rate(team_ratings, ranks=observations)
|
||||
|
||||
class RegressionMetrics():
|
||||
class RegressionMetric():
|
||||
|
||||
def __new__(cls, predictions, targets):
|
||||
|
||||
@ -515,7 +522,7 @@ class RegressionMetrics():
|
||||
|
||||
return math.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|
||||
|
||||
class ClassificationMetrics():
|
||||
class ClassificationMetric():
|
||||
|
||||
def __new__(cls, predictions, targets):
|
||||
|
||||
@ -583,7 +590,7 @@ def decisiontree(data, labels, test_size = 0.3, criterion = "gini", splitter = "
|
||||
model = sklearn.tree.DecisionTreeClassifier(criterion = criterion, splitter = splitter, max_depth = max_depth)
|
||||
model = model.fit(data_train,labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
metrics = ClassificationMetrics(predictions, labels_test)
|
||||
metrics = ClassificationMetric(predictions, labels_test)
|
||||
|
||||
return model, metrics
|
||||
|
||||
@ -596,7 +603,7 @@ class KNN:
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def knn_regressor(self, data, outputs, test_size, n_neighbors = 5, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||||
|
||||
@ -605,7 +612,7 @@ class KNN:
|
||||
model.fit(data_train, outputs_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, RegressionMetrics(predictions, outputs_test)
|
||||
return model, RegressionMetric(predictions, outputs_test)
|
||||
|
||||
class NaiveBayes:
|
||||
|
||||
@ -616,7 +623,7 @@ class NaiveBayes:
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def multinomial(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||||
|
||||
@ -625,7 +632,7 @@ class NaiveBayes:
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def bernoulli(self, data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||||
|
||||
@ -634,7 +641,7 @@ class NaiveBayes:
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
def complement(self, data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||||
|
||||
@ -643,7 +650,7 @@ class NaiveBayes:
|
||||
model.fit(data_train, labels_train)
|
||||
predictions = model.predict(data_test)
|
||||
|
||||
return model, ClassificationMetrics(predictions, labels_test)
|
||||
return model, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
class SVM:
|
||||
|
||||
@ -693,33 +700,35 @@ class SVM:
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
|
||||
return ClassificationMetrics(predictions, test_outputs)
|
||||
return ClassificationMetric(predictions, test_outputs)
|
||||
|
||||
def eval_regression(self, kernel, test_data, test_outputs):
|
||||
|
||||
predictions = kernel.predict(test_data)
|
||||
|
||||
return RegressionMetrics(predictions, test_outputs)
|
||||
return RegressionMetric(predictions, test_outputs)
|
||||
|
||||
def random_forest_classifier(data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
class RandomForrest:
|
||||
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||
kernel.fit(data_train, labels_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
def random_forest_classifier(self, data, labels, test_size, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||
|
||||
return kernel, ClassificationMetrics(predictions, labels_test)
|
||||
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||
kernel.fit(data_train, labels_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
def random_forest_regressor(data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||
return kernel, ClassificationMetric(predictions, labels_test)
|
||||
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||
kernel.fit(data_train, outputs_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
def random_forest_regressor(self, data, outputs, test_size, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||
|
||||
return kernel, RegressionMetrics(predictions, outputs_test)
|
||||
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||||
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||
kernel.fit(data_train, outputs_train)
|
||||
predictions = kernel.predict(data_test)
|
||||
|
||||
class CorrelationTests:
|
||||
return kernel, RegressionMetric(predictions, outputs_test)
|
||||
|
||||
class CorrelationTest:
|
||||
|
||||
def anova_oneway(self, *args): #expects arrays of samples
|
||||
|
||||
@ -756,7 +765,7 @@ class CorrelationTests:
|
||||
results = scipy.stats.multiscale_graphcorr(x, y, compute_distance = compute_distance, reps = reps, workers = workers, is_twosamp = is_twosamp, random_state = random_state)
|
||||
return {"k-value": results[0], "p-value": results[1], "data": results[2]} # unsure if MGC test returns a k value
|
||||
|
||||
class StatisticalTests:
|
||||
class StatisticalTest:
|
||||
|
||||
def ttest_onesample(self, a, popmean, axis = 0, nan_policy = 'propagate'):
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user