mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
analysis.py - v 1.0.7.000
changelog: - added tanh_regression (logistical regression) - bug fixes
This commit is contained in:
parent
4c87c425f8
commit
23f932ecf3
Binary file not shown.
@ -7,10 +7,13 @@
|
|||||||
#number of easter eggs: 2
|
#number of easter eggs: 2
|
||||||
#setup:
|
#setup:
|
||||||
|
|
||||||
__version__ = "1.0.6.005"
|
__version__ = "1.0.7.000"
|
||||||
|
|
||||||
#changelog should be viewed using print(analysis.__changelog__)
|
#changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.0.7.000:
|
||||||
|
- added tanh_regression (logistical regression)
|
||||||
|
- bug fixes
|
||||||
1.0.6.005:
|
1.0.6.005:
|
||||||
- added z_normalize function to normalize dataset
|
- added z_normalize function to normalize dataset
|
||||||
- bug fixes
|
- bug fixes
|
||||||
@ -119,6 +122,7 @@ import numbers
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
import random
|
||||||
import scipy
|
import scipy
|
||||||
|
from scipy.optimize import curve_fit
|
||||||
from sklearn import *
|
from sklearn import *
|
||||||
#import statistics <-- statistics.py functions have been integrated into analysis.py as of v 1.0.3.002
|
#import statistics <-- statistics.py functions have been integrated into analysis.py as of v 1.0.3.002
|
||||||
import time
|
import time
|
||||||
@ -640,7 +644,7 @@ def log_regression(x, y, base):
|
|||||||
_rms = rms(vals, y)
|
_rms = rms(vals, y)
|
||||||
r2_d2 = r_squared(vals, y)
|
r2_d2 = r_squared(vals, y)
|
||||||
|
|
||||||
return [eq_str, _rms, r2_d2]
|
return eq_str, _rms, r2_d2
|
||||||
|
|
||||||
def exp_regression(x, y, base):
|
def exp_regression(x, y, base):
|
||||||
|
|
||||||
@ -660,7 +664,26 @@ def exp_regression(x, y, base):
|
|||||||
_rms = rms(vals, y)
|
_rms = rms(vals, y)
|
||||||
r2_d2 = r_squared(vals, y)
|
r2_d2 = r_squared(vals, y)
|
||||||
|
|
||||||
return [eq_str, _rms, r2_d2]
|
return eq_str, _rms, r2_d2
|
||||||
|
|
||||||
|
def tanh_regression(x, y):
|
||||||
|
|
||||||
|
def tanh (x, a, b, c, d):
|
||||||
|
|
||||||
|
return a * np.tanh(b * (x - c)) + d
|
||||||
|
|
||||||
|
reg_eq = np.float64(curve_fit(tanh, np.array(x), np.array(y))[0]).tolist()
|
||||||
|
eq_str = str(reg_eq[0]) + " * np.tanh(" + str(reg_eq[1]) + "*(z - " + str(reg_eq[2]) + ")) + " + str(reg_eq[3])
|
||||||
|
vals = []
|
||||||
|
|
||||||
|
for i in range(len(x)):
|
||||||
|
z = x[i]
|
||||||
|
exec("vals.append(" + eq_str + ")")
|
||||||
|
|
||||||
|
_rms = rms(vals, y)
|
||||||
|
r2_d2 = r_squared(vals, y)
|
||||||
|
|
||||||
|
return eq_str, _rms, r2_d2
|
||||||
|
|
||||||
def r_squared(predictions, targets): # assumes equal size inputs
|
def r_squared(predictions, targets): # assumes equal size inputs
|
||||||
|
|
||||||
@ -735,25 +758,36 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
|||||||
r2s = []
|
r2s = []
|
||||||
|
|
||||||
for i in range (0, _range + 1, 1):
|
for i in range (0, _range + 1, 1):
|
||||||
eqs.append(poly_regression(x_train, y_train, i)[0])
|
x, y, z = poly_regression(x_train, y_train, i)
|
||||||
rmss.append(poly_regression(x_train, y_train, i)[1])
|
eqs.append(x)
|
||||||
r2s.append(poly_regression(x_train, y_train, i)[2])
|
rmss.append(y)
|
||||||
|
r2s.append(z)
|
||||||
|
|
||||||
for i in range (1, 100 * resolution + 1):
|
for i in range (1, 100 * resolution + 1):
|
||||||
try:
|
try:
|
||||||
eqs.append(exp_regression(x_train, y_train, float(i / resolution))[0])
|
x, y, z = exp_regression(x_train, y_train, float(i / resolution))
|
||||||
rmss.append(exp_regression(x_train, y_train, float(i / resolution))[1])
|
eqs.append(x)
|
||||||
r2s.append(exp_regression(x_train, y_train, float(i / resolution))[2])
|
rmss.append(y)
|
||||||
|
r2s.append(z)
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
for i in range (1, 100 * resolution + 1):
|
for i in range (1, 100 * resolution + 1):
|
||||||
try:
|
try:
|
||||||
eqs.append(log_regression(x_train, y_train, float(i / resolution))[0])
|
x, y, z = log_regression(x_train, y_train, float(i / resolution))
|
||||||
rmss.append(log_regression(x_train, y_train, float(i / resolution))[1])
|
eqs.append(x)
|
||||||
r2s.append(log_regression(x_train, y_train, float(i / resolution))[2])
|
rmss.append(y)
|
||||||
|
r2s.append(z)
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
x, y, z = tanh_regression(x_train, y_train)
|
||||||
|
|
||||||
|
eqs.append(x)
|
||||||
|
rmss.append(y)
|
||||||
|
r2s.append(z)
|
||||||
|
|
||||||
|
print (eqs[::-1])
|
||||||
|
|
||||||
for i in range (0, len(eqs), 1): #marks all equations where r2 = 1 as they 95% of the time overfit the data
|
for i in range (0, len(eqs), 1): #marks all equations where r2 = 1 as they 95% of the time overfit the data
|
||||||
if r2s[i] == 1:
|
if r2s[i] == 1:
|
||||||
|
Loading…
Reference in New Issue
Block a user