mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-27 01:59:08 +00:00
analysis.py v 1.1.11.000
This commit is contained in:
parent
df42ae734e
commit
234f54ef5d
@ -7,10 +7,13 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.10.000"
|
__version__ = "1.1.11.000"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.11.000:
|
||||||
|
- added RandomForestClassifier and RandomForestRegressor
|
||||||
|
- note: untested
|
||||||
1.1.10.000:
|
1.1.10.000:
|
||||||
- added numba.jit to remaining functions
|
- added numba.jit to remaining functions
|
||||||
1.1.9.002:
|
1.1.9.002:
|
||||||
@ -551,6 +554,18 @@ class SVM:
|
|||||||
|
|
||||||
return r_2, _mse, _rms
|
return r_2, _mse, _rms
|
||||||
|
|
||||||
|
def RandomForestClassifier(data, labels, n_estimators="warn", criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None):
|
||||||
|
|
||||||
|
kernel = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_samples_leaf = min_samples_leaf, min_weight_fraction_leaf = min_weight_fraction_leaf, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start, class_weight = class_weight)
|
||||||
|
kernel.fit(data, labels)
|
||||||
|
return kernel
|
||||||
|
|
||||||
|
def RandomForestRegressor(inputs, outputs, n_estimators="warn", criterion="mse", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features="auto", max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False):
|
||||||
|
|
||||||
|
kernel = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators, criterion = criterion, max_depth = max_depth, min_samples_split = min_samples_split, min_weight_fraction_leaf = min_weight_fraction_leaf, max_features = max_features, max_leaf_nodes = max_leaf_nodes, min_impurity_decrease = min_impurity_decrease, min_impurity_split = min_impurity_split, bootstrap = bootstrap, oob_score = oob_score, n_jobs = n_jobs, random_state = random_state, verbose = verbose, warm_start = warm_start)
|
||||||
|
kernel.fit(inputs, outputs)
|
||||||
|
return kernel
|
||||||
|
|
||||||
class Regression:
|
class Regression:
|
||||||
|
|
||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
|
Loading…
Reference in New Issue
Block a user