mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-26 17:49:09 +00:00
doc
This commit is contained in:
parent
1ae56f8dfd
commit
22c24a1fc2
Binary file not shown.
@ -7,10 +7,15 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.12.000"
|
__version__ = "1.1.12.001"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.12.001:
|
||||||
|
- improved readibility of regression outputs by stripping tensor data
|
||||||
|
- used map with lambda to acheive the improved readibility
|
||||||
|
- lost numba jit support with regression, and generated_jit hangs at execution
|
||||||
|
- TODO: reimplement correct numba integration in regression
|
||||||
1.1.12.000:
|
1.1.12.000:
|
||||||
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
|
||||||
1.1.11.010:
|
1.1.11.010:
|
||||||
@ -318,28 +323,33 @@ def histo_analysis(hist_data):
|
|||||||
|
|
||||||
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
return basic_stats(derivative)[0], basic_stats(derivative)[3]
|
||||||
|
|
||||||
@jit(forceobj=True)
|
|
||||||
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
|
||||||
|
|
||||||
regressions = []
|
regressions = []
|
||||||
Regression().set_device(ndevice)
|
Regression().set_device(ndevice)
|
||||||
|
|
||||||
if 'lin' in args:
|
if 'lin' in args: # formula: ax + b
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression().SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor([outputs]).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
params = model[0].parameters
|
||||||
|
params[:] = map(lambda x: x.item(), params)
|
||||||
|
regressions.append((params, model[1][::-1][0]))
|
||||||
|
|
||||||
if 'log' in args:
|
if 'log' in args: # formula: a log (b(x + c)) + d
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression().SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
params = model[0].parameters
|
||||||
|
params[:] = map(lambda x: x.item(), params)
|
||||||
|
regressions.append((params, model[1][::-1][0]))
|
||||||
|
|
||||||
if 'exp' in args:
|
if 'exp' in args: # formula: a e ^ (b(x + c)) + d
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression().SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
params = model[0].parameters
|
||||||
|
params[:] = map(lambda x: x.item(), params)
|
||||||
|
regressions.append((params, model[1][::-1][0]))
|
||||||
|
|
||||||
if 'ply' in args:
|
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
|
||||||
|
|
||||||
plys = []
|
plys = []
|
||||||
limit = len(outputs[0])
|
limit = len(outputs[0])
|
||||||
@ -374,10 +384,12 @@ def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _itera
|
|||||||
regressions.append(plys)
|
regressions.append(plys)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if 'sig' in args:
|
if 'sig' in args: # formula: a sig (b(x + c)) + d | sig() = 1/(1 + e ^ -x)
|
||||||
|
|
||||||
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
model = Regression().SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).to(device), torch.tensor(outputs).to(torch.float).to(device), iterations=_iterations, learning_rate=lr, return_losses=True)
|
||||||
regressions.append((model[0].parameters, model[1][::-1][0]))
|
params = model[0].parameters
|
||||||
|
params[:] = map(lambda x: x.item(), params)
|
||||||
|
regressions.append((params, model[1][::-1][0]))
|
||||||
|
|
||||||
return regressions
|
return regressions
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user