mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-27 15:15:54 +00:00
ultra galaxybrain working
This commit is contained in:
parent
267918d67e
commit
1ca0726687
Binary file not shown.
@ -7,10 +7,12 @@
|
||||
# current benchmark of optimization: 1.33 times faster
|
||||
# setup:
|
||||
|
||||
__version__ = "1.1.13.003"
|
||||
__version__ = "1.1.13.004"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
1.1.13.004:
|
||||
- small fixes to regression to improve performance
|
||||
1.1.13.003:
|
||||
- filtered nans from regression
|
||||
1.1.13.002:
|
||||
@ -348,11 +350,9 @@ def histo_analysis(hist_data):
|
||||
|
||||
def regression(inputs, outputs, args): # inputs, outputs expects N-D array
|
||||
|
||||
inputs = np.array(inputs)
|
||||
outputs = np.array(outputs)
|
||||
X = np.array(inputs)
|
||||
y = np.array(outputs)
|
||||
|
||||
inputs = inputs[np.isfinite(inputs)]
|
||||
outputs = outputs[np.isfinite(outputs)]
|
||||
regressions = []
|
||||
|
||||
if 'lin' in args: # formula: ax + b
|
||||
|
@ -3,10 +3,13 @@
|
||||
# Notes:
|
||||
# setup:
|
||||
|
||||
__version__ = "0.0.4.000"
|
||||
__version__ = "0.0.4.001"
|
||||
|
||||
# changelog should be viewed using print(analysis.__changelog__)
|
||||
__changelog__ = """changelog:
|
||||
0.0.4.001:
|
||||
- fixed bug where X range for regression was determined before sanitization
|
||||
- better sanitized data
|
||||
0.0.4.000:
|
||||
- fixed spelling issue in __changelog__
|
||||
- addressed nan bug in regression
|
||||
@ -76,6 +79,7 @@ __all__ = [
|
||||
|
||||
from analysis import analysis as an
|
||||
import data as d
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
import warnings
|
||||
@ -150,6 +154,8 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
||||
variable_data = data[team][variable]
|
||||
if(variable in tests):
|
||||
for test in tests[variable]:
|
||||
print(team)
|
||||
print(variable)
|
||||
test_vector[test] = simplestats(variable_data, test)
|
||||
else:
|
||||
pass
|
||||
@ -160,26 +166,30 @@ def simpleloop(data, tests): # expects 3D array with [Team][Variable][Match]
|
||||
|
||||
def simplestats(data, test):
|
||||
|
||||
data = np.array(data)
|
||||
data = data[np.isfinite(data)]
|
||||
ranges = list(range(len(data)))
|
||||
|
||||
if(test == "basic_stats"):
|
||||
return an.basic_stats(data)
|
||||
|
||||
if(test == "historical_analysis"):
|
||||
return an.histo_analysis([list(range(len(data))), data])
|
||||
return an.histo_analysis([ranges, data])
|
||||
|
||||
if(test == "regression_linear"):
|
||||
return an.regression(list(range(len(data))), data, ['lin'])
|
||||
return an.regression(ranges, data, ['lin'])
|
||||
|
||||
if(test == "regression_logarithmic"):
|
||||
return an.regression(list(range(len(data))), data, ['log'])
|
||||
return an.regression(ranges, data, ['log'])
|
||||
|
||||
if(test == "regression_exponential"):
|
||||
return an.regression(list(range(len(data))), data, ['exp'])
|
||||
return an.regression(ranges, data, ['exp'])
|
||||
|
||||
if(test == "regression_polynomial"):
|
||||
return an.regression(list(range(len(data))), data, ['ply'])
|
||||
return an.regression(ranges, data, ['ply'])
|
||||
|
||||
if(test == "regression_sigmoidal"):
|
||||
return an.regression(list(range(len(data))), data, ['sig'])
|
||||
return an.regression(ranges, data, ['sig'])
|
||||
|
||||
def push_to_database(apikey, competition, results, pit):
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user