analysis.py v 1.1.12.000

This commit is contained in:
art 2020-02-18 15:25:23 -06:00
parent a92d28ace7
commit 1ae56f8dfd
4 changed files with 32 additions and 4 deletions

View File

@ -7,10 +7,12 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.11.010" __version__ = "1.1.12.000"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.12.000:
- temporarily fixed polynomial regressions by using sklearn's PolynomialFeatures
1.1.11.010: 1.1.11.010:
- alphabeticaly ordered import lists - alphabeticaly ordered import lists
1.1.11.009: 1.1.11.009:
@ -317,10 +319,10 @@ def histo_analysis(hist_data):
return basic_stats(derivative)[0], basic_stats(derivative)[3] return basic_stats(derivative)[0], basic_stats(derivative)[3]
@jit(forceobj=True) @jit(forceobj=True)
def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01, power_limit = None): # inputs, outputs expects N-D array def regression(ndevice, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01, _iterations_ply = 10000, lr_ply = 0.01): # inputs, outputs expects N-D array
regressions = [] regressions = []
Regression().set_device(device) Regression().set_device(ndevice)
if 'lin' in args: if 'lin' in args:
@ -340,6 +342,25 @@ def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterat
if 'ply' in args: if 'ply' in args:
plys = [] plys = []
limit = len(outputs[0])
for i in range(2, limit):
model = sklearn.preprocessing.PolynomialFeatures(degree = i)
model = sklearn.pipeline.make_pipeline(model, sklearn.linear_model.LinearRegression())
model = model.fit(np.rot90(inputs), np.rot90(outputs))
params = model.steps[1][1].intercept_.tolist()
params = np.append(params, model.steps[1][1].coef_[0].tolist()[1::])
params.flatten()
params = params.tolist()
plys.append(params)
regressions.append(plys)
""" non functional and dep
plys = []
if power_limit == None: if power_limit == None:
@ -351,6 +372,7 @@ def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterat
plys.append((model[0].parameters, model[1][::-1][0])) plys.append((model[0].parameters, model[1][::-1][0]))
regressions.append(plys) regressions.append(plys)
"""
if 'sig' in args: if 'sig' in args:

View File

@ -24,4 +24,10 @@ __all__ = [
from analysis import analysis as an from analysis import analysis as an
from numba import jit from numba import jit
import numpy as np import numpy as np
def main():
pass
main()