mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-27 09:59:10 +00:00
started c-ifying analysis
This commit is contained in:
parent
0d240e3b09
commit
087e201baa
@ -153,9 +153,11 @@ from sklearn import *
|
||||
import time
|
||||
import torch
|
||||
|
||||
|
||||
class error(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
def _init_device(setting, arg): # initiates computation device for ANNs
|
||||
if setting == "cuda":
|
||||
try:
|
||||
@ -170,6 +172,7 @@ def _init_device (setting, arg): #initiates computation device for ANNs
|
||||
else:
|
||||
raise error("specified device does not exist")
|
||||
|
||||
|
||||
class c_entities:
|
||||
|
||||
c_names = []
|
||||
@ -190,7 +193,6 @@ class c_entities:
|
||||
self.c_logic = logic
|
||||
return None
|
||||
|
||||
|
||||
def append(self, n_name, n_id, n_pos, n_property, n_logic):
|
||||
self.c_names.append(n_name)
|
||||
self.c_ids.append(n_id)
|
||||
@ -232,6 +234,7 @@ class c_entities:
|
||||
def regurgitate(self):
|
||||
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_logic]
|
||||
|
||||
|
||||
class nc_entities:
|
||||
|
||||
c_names = []
|
||||
@ -295,6 +298,7 @@ class nc_entities:
|
||||
|
||||
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
|
||||
|
||||
|
||||
class obstacles:
|
||||
|
||||
c_names = []
|
||||
@ -351,6 +355,7 @@ class obstacles:
|
||||
def regurgitate(self):
|
||||
return[self.c_names, self.c_ids, self.c_perim, self.c_effects]
|
||||
|
||||
|
||||
class objectives:
|
||||
|
||||
c_names = []
|
||||
@ -408,13 +413,16 @@ class objectives:
|
||||
def regurgitate(self):
|
||||
return[self.c_names, self.c_ids, self.c_pos, self.c_effects]
|
||||
|
||||
|
||||
def load_csv(filepath):
|
||||
with open(filepath, newline='') as csvfile:
|
||||
file_array = list(csv.reader(csvfile))
|
||||
csvfile.close()
|
||||
return file_array
|
||||
|
||||
def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||
|
||||
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||
def basic_stats(data, method, arg):
|
||||
|
||||
if method == 'debug':
|
||||
return "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]"
|
||||
@ -498,11 +506,15 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
|
||||
else:
|
||||
raise error("method error")
|
||||
|
||||
def z_score(point, mean, stdev): #returns z score with inputs of point, mean and standard deviation of spread
|
||||
|
||||
# returns z score with inputs of point, mean and standard deviation of spread
|
||||
def z_score(point, mean, stdev):
|
||||
score = (point - mean) / stdev
|
||||
return score
|
||||
|
||||
def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
|
||||
|
||||
# mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
|
||||
def z_normalize(x, y, mode):
|
||||
|
||||
x_norm = []
|
||||
y_norm = []
|
||||
@ -543,19 +555,23 @@ def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on t
|
||||
|
||||
return error('method error')
|
||||
|
||||
def stdev_z_split(mean, stdev, delta, low_bound, high_bound): #returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
|
||||
|
||||
# returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
|
||||
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
|
||||
|
||||
z_split = []
|
||||
i = low_bound
|
||||
|
||||
while True:
|
||||
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
|
||||
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) *
|
||||
math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
|
||||
i = i + delta
|
||||
if i > high_bound:
|
||||
break
|
||||
|
||||
return z_split
|
||||
|
||||
|
||||
def histo_analysis(hist_data, delta, low_bound, high_bound):
|
||||
|
||||
if hist_data == 'debug':
|
||||
@ -593,6 +609,7 @@ def histo_analysis(hist_data, delta, low_bound, high_bound):
|
||||
|
||||
return predictions
|
||||
|
||||
|
||||
def poly_regression(x, y, power):
|
||||
|
||||
if x == "null": # if x is 'null', then x will be filled with integer points between 1 and the size of y
|
||||
@ -607,9 +624,11 @@ def poly_regression(x, y, power):
|
||||
|
||||
for i in range(0, len(reg_eq), 1):
|
||||
if i < len(reg_eq) - 1:
|
||||
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")+"
|
||||
eq_str = eq_str + str(reg_eq[i]) + \
|
||||
"*(z**" + str(len(reg_eq) - i - 1) + ")+"
|
||||
else:
|
||||
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")"
|
||||
eq_str = eq_str + str(reg_eq[i]) + \
|
||||
"*(z**" + str(len(reg_eq) - i - 1) + ")"
|
||||
|
||||
vals = []
|
||||
|
||||
@ -626,18 +645,22 @@ def poly_regression(x, y, power):
|
||||
|
||||
return [eq_str, _rms, r2_d2]
|
||||
|
||||
|
||||
def log_regression(x, y, base):
|
||||
|
||||
x_fit = []
|
||||
|
||||
for i in range(len(x)):
|
||||
try:
|
||||
x_fit.append(np.log(x[i]) / np.log(base)) #change of base for logs
|
||||
# change of base for logs
|
||||
x_fit.append(np.log(x[i]) / np.log(base))
|
||||
except:
|
||||
pass
|
||||
|
||||
reg_eq = np.polyfit(x_fit, y, 1) # y = reg_eq[0] * log(x, base) + reg_eq[1]
|
||||
q_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + str(base) +"))+" + str(reg_eq[1])
|
||||
# y = reg_eq[0] * log(x, base) + reg_eq[1]
|
||||
reg_eq = np.polyfit(x_fit, y, 1)
|
||||
q_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + \
|
||||
str(base) + "))+" + str(reg_eq[1])
|
||||
vals = []
|
||||
|
||||
for i in range(len(x)):
|
||||
@ -653,18 +676,22 @@ def log_regression(x, y, base):
|
||||
|
||||
return eq_str, _rms, r2_d2
|
||||
|
||||
|
||||
def exp_regression(x, y, base):
|
||||
|
||||
y_fit = []
|
||||
|
||||
for i in range(len(y)):
|
||||
try:
|
||||
y_fit.append(np.log(y[i]) / np.log(base)) #change of base for logs
|
||||
# change of base for logs
|
||||
y_fit.append(np.log(y[i]) / np.log(base))
|
||||
except:
|
||||
pass
|
||||
|
||||
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit)) # y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
|
||||
eq_str = "(" + str(base) + "**(" + str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
|
||||
# y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
|
||||
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit))
|
||||
eq_str = "(" + str(base) + "**(" + \
|
||||
str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
|
||||
vals = []
|
||||
|
||||
for i in range(len(x)):
|
||||
@ -680,6 +707,7 @@ def exp_regression(x, y, base):
|
||||
|
||||
return eq_str, _rms, r2_d2
|
||||
|
||||
|
||||
def tanh_regression(x, y):
|
||||
|
||||
def tanh(x, a, b, c, d):
|
||||
@ -687,7 +715,8 @@ def tanh_regression(x, y):
|
||||
return a * np.tanh(b * (x - c)) + d
|
||||
|
||||
reg_eq = np.float64(curve_fit(tanh, np.array(x), np.array(y))[0]).tolist()
|
||||
eq_str = str(reg_eq[0]) + " * np.tanh(" + str(reg_eq[1]) + "*(z - " + str(reg_eq[2]) + ")) + " + str(reg_eq[3])
|
||||
eq_str = str(reg_eq[0]) + " * np.tanh(" + str(reg_eq[1]) + \
|
||||
"*(z - " + str(reg_eq[2]) + ")) + " + str(reg_eq[3])
|
||||
vals = []
|
||||
|
||||
for i in range(len(x)):
|
||||
@ -702,10 +731,12 @@ def tanh_regression(x, y):
|
||||
|
||||
return eq_str, _rms, r2_d2
|
||||
|
||||
|
||||
def r_squared(predictions, targets): # assumes equal size inputs
|
||||
|
||||
return metrics.r2_score(np.array(targets), np.array(predictions))
|
||||
|
||||
|
||||
def rms(predictions, targets): # assumes equal size inputs
|
||||
|
||||
_sum = 0
|
||||
@ -715,6 +746,7 @@ def rms(predictions, targets): # assumes equal size inputs
|
||||
|
||||
return float(math.sqrt(_sum / len(targets)))
|
||||
|
||||
|
||||
def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
|
||||
|
||||
# performance overfit = performance(train) - performance(test) where performance is r^2
|
||||
@ -733,6 +765,7 @@ def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
|
||||
|
||||
return r2_train - r2_test
|
||||
|
||||
|
||||
def strip_data(data, mode):
|
||||
|
||||
if mode == "adam": # x is the row number, y are the data
|
||||
@ -744,7 +777,9 @@ def strip_data(data, mode):
|
||||
else:
|
||||
raise error("mode error")
|
||||
|
||||
def optimize_regression(x, y, _range, resolution):#_range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
|
||||
|
||||
# _range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
|
||||
def optimize_regression(x, y, _range, resolution):
|
||||
# usage not: for demonstration purpose only, performance is shit
|
||||
if type(resolution) != int:
|
||||
raise error("resolution must be int")
|
||||
@ -810,7 +845,8 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
||||
except:
|
||||
pass
|
||||
|
||||
for i in range (0, len(eqs), 1): #marks all equations where r2 = 1 as they 95% of the time overfit the data
|
||||
# marks all equations where r2 = 1 as they 95% of the time overfit the data
|
||||
for i in range(0, len(eqs), 1):
|
||||
if r2s[i] == 1:
|
||||
eqs[i] = ""
|
||||
rmss[i] = ""
|
||||
@ -832,6 +868,7 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
||||
|
||||
return eqs, rmss, r2s, overfit
|
||||
|
||||
|
||||
def select_best_regression(eqs, rmss, r2s, overfit, selector):
|
||||
|
||||
b_eq = ""
|
||||
@ -860,11 +897,14 @@ def select_best_regression(eqs, rmss, r2s, overfit, selector):
|
||||
|
||||
return b_eq, b_rms, b_r2, b_overfit
|
||||
|
||||
|
||||
def p_value(x, y): # takes 2 1d arrays
|
||||
|
||||
return stats.ttest_ind(x, y)[1]
|
||||
|
||||
def basic_analysis(data): #assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
|
||||
|
||||
# assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
|
||||
def basic_analysis(data):
|
||||
|
||||
row = len(data)
|
||||
column = []
|
||||
@ -900,6 +940,7 @@ def benchmark(x, y):
|
||||
|
||||
return [(end_g - start_g), (end_a - start_a)]
|
||||
|
||||
|
||||
def generate_data(filename, x, y, low, high):
|
||||
|
||||
file = open(filename, "w")
|
||||
@ -913,9 +954,11 @@ def generate_data(filename, x, y, low, high):
|
||||
temp = temp + str(random.uniform(low, high))
|
||||
file.write(temp + "\n")
|
||||
|
||||
|
||||
class StatisticsError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
def _sum(data, start=0):
|
||||
count = 0
|
||||
n, d = _exact_ratio(start)
|
||||
@ -936,26 +979,35 @@ def _sum(data, start=0):
|
||||
total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
|
||||
return (T, total, count)
|
||||
|
||||
|
||||
def _isfinite(x):
|
||||
try:
|
||||
return x.is_finite() # Likely a Decimal.
|
||||
except AttributeError:
|
||||
return math.isfinite(x) # Coerces to float first.
|
||||
|
||||
|
||||
def _coerce(T, S):
|
||||
|
||||
assert T is not bool, "initial type T is bool"
|
||||
|
||||
if T is S: return T
|
||||
if T is S:
|
||||
return T
|
||||
|
||||
if S is int or S is bool: return T
|
||||
if T is int: return S
|
||||
if S is int or S is bool:
|
||||
return T
|
||||
if T is int:
|
||||
return S
|
||||
|
||||
if issubclass(S, T): return S
|
||||
if issubclass(T, S): return T
|
||||
if issubclass(S, T):
|
||||
return S
|
||||
if issubclass(T, S):
|
||||
return T
|
||||
|
||||
if issubclass(T, int): return S
|
||||
if issubclass(S, int): return T
|
||||
if issubclass(T, int):
|
||||
return S
|
||||
if issubclass(S, int):
|
||||
return T
|
||||
|
||||
if issubclass(T, Fraction) and issubclass(S, float):
|
||||
return S
|
||||
@ -965,6 +1017,7 @@ def _coerce(T, S):
|
||||
msg = "don't know how to coerce %s and %s"
|
||||
raise TypeError(msg % (T.__name__, S.__name__))
|
||||
|
||||
|
||||
def _exact_ratio(x):
|
||||
|
||||
try:
|
||||
@ -988,6 +1041,7 @@ def _exact_ratio(x):
|
||||
msg = "can't convert type '{}' to numerator/denominator"
|
||||
raise TypeError(msg.format(type(x).__name__))
|
||||
|
||||
|
||||
def _convert(value, T):
|
||||
|
||||
if type(value) is T:
|
||||
@ -1004,6 +1058,7 @@ def _convert(value, T):
|
||||
else:
|
||||
raise
|
||||
|
||||
|
||||
def _counts(data):
|
||||
|
||||
table = collections.Counter(iter(data)).most_common()
|
||||
@ -1041,6 +1096,7 @@ def _fail_neg(values, errmsg='negative value'):
|
||||
raise StatisticsError(errmsg)
|
||||
yield x
|
||||
|
||||
|
||||
def mean(data):
|
||||
|
||||
if iter(data) is data:
|
||||
@ -1052,6 +1108,7 @@ def mean(data):
|
||||
assert count == n
|
||||
return _convert(total / n, T)
|
||||
|
||||
|
||||
def median(data):
|
||||
|
||||
data = sorted(data)
|
||||
@ -1064,6 +1121,7 @@ def median(data):
|
||||
i = n // 2
|
||||
return (data[i - 1] + data[i]) / 2
|
||||
|
||||
|
||||
def mode(data):
|
||||
|
||||
table = _counts(data)
|
||||
@ -1076,6 +1134,7 @@ def mode(data):
|
||||
else:
|
||||
raise StatisticsError('no mode for empty data')
|
||||
|
||||
|
||||
def _ss(data, c=None):
|
||||
|
||||
if c is None:
|
||||
@ -1088,6 +1147,7 @@ def _ss(data, c=None):
|
||||
assert not total < 0, 'negative sum of square deviations: %f' % total
|
||||
return (T, total)
|
||||
|
||||
|
||||
def variance(data, xbar=None):
|
||||
|
||||
if iter(data) is data:
|
||||
@ -1098,6 +1158,7 @@ def variance(data, xbar=None):
|
||||
T, ss = _ss(data, xbar)
|
||||
return _convert(ss / (n - 1), T)
|
||||
|
||||
|
||||
def stdev(data, xbar=None):
|
||||
|
||||
var = variance(data, xbar)
|
||||
|
Binary file not shown.
Binary file not shown.
BIN
data analysis/build/temp.win-amd64-3.7/Release/analysis.obj
Normal file
BIN
data analysis/build/temp.win-amd64-3.7/Release/analysis.obj
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
data analysis/build/temp.win-amd64-3.7/Release/c_analysis.obj
Normal file
BIN
data analysis/build/temp.win-amd64-3.7/Release/c_analysis.obj
Normal file
Binary file not shown.
5
data analysis/setup.py
Normal file
5
data analysis/setup.py
Normal file
@ -0,0 +1,5 @@
|
||||
from distutils.core import setup
|
||||
from Cython.Build import cythonize
|
||||
|
||||
setup(name='analysis',
|
||||
ext_modules=cythonize("analysis.py"))
|
Loading…
Reference in New Issue
Block a user