started c-ifying analysis

This commit is contained in:
ltcptgeneral 2019-04-05 17:24:24 -05:00
parent 0d240e3b09
commit 087e201baa
8 changed files with 290 additions and 224 deletions

View File

@ -153,9 +153,11 @@ from sklearn import *
import time
import torch
class error(ValueError):
pass
def _init_device(setting, arg): # initiates computation device for ANNs
if setting == "cuda":
try:
@ -170,6 +172,7 @@ def _init_device (setting, arg): #initiates computation device for ANNs
else:
raise error("specified device does not exist")
class c_entities:
c_names = []
@ -190,7 +193,6 @@ class c_entities:
self.c_logic = logic
return None
def append(self, n_name, n_id, n_pos, n_property, n_logic):
self.c_names.append(n_name)
self.c_ids.append(n_id)
@ -232,6 +234,7 @@ class c_entities:
def regurgitate(self):
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_logic]
class nc_entities:
c_names = []
@ -295,6 +298,7 @@ class nc_entities:
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
class obstacles:
c_names = []
@ -351,6 +355,7 @@ class obstacles:
def regurgitate(self):
return[self.c_names, self.c_ids, self.c_perim, self.c_effects]
class objectives:
c_names = []
@ -408,13 +413,16 @@ class objectives:
def regurgitate(self):
return[self.c_names, self.c_ids, self.c_pos, self.c_effects]
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = list(csv.reader(csvfile))
csvfile.close()
return file_array
def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
def basic_stats(data, method, arg):
if method == 'debug':
return "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]"
@ -498,11 +506,15 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
else:
raise error("method error")
def z_score(point, mean, stdev): #returns z score with inputs of point, mean and standard deviation of spread
# returns z score with inputs of point, mean and standard deviation of spread
def z_score(point, mean, stdev):
score = (point - mean) / stdev
return score
def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
# mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
def z_normalize(x, y, mode):
x_norm = []
y_norm = []
@ -543,19 +555,23 @@ def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on t
return error('method error')
def stdev_z_split(mean, stdev, delta, low_bound, high_bound): #returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
# returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
z_split = []
i = low_bound
while True:
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) *
math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
i = i + delta
if i > high_bound:
break
return z_split
def histo_analysis(hist_data, delta, low_bound, high_bound):
if hist_data == 'debug':
@ -593,6 +609,7 @@ def histo_analysis(hist_data, delta, low_bound, high_bound):
return predictions
def poly_regression(x, y, power):
if x == "null": # if x is 'null', then x will be filled with integer points between 1 and the size of y
@ -607,9 +624,11 @@ def poly_regression(x, y, power):
for i in range(0, len(reg_eq), 1):
if i < len(reg_eq) - 1:
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")+"
eq_str = eq_str + str(reg_eq[i]) + \
"*(z**" + str(len(reg_eq) - i - 1) + ")+"
else:
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")"
eq_str = eq_str + str(reg_eq[i]) + \
"*(z**" + str(len(reg_eq) - i - 1) + ")"
vals = []
@ -626,18 +645,22 @@ def poly_regression(x, y, power):
return [eq_str, _rms, r2_d2]
def log_regression(x, y, base):
x_fit = []
for i in range(len(x)):
try:
x_fit.append(np.log(x[i]) / np.log(base)) #change of base for logs
# change of base for logs
x_fit.append(np.log(x[i]) / np.log(base))
except:
pass
reg_eq = np.polyfit(x_fit, y, 1) # y = reg_eq[0] * log(x, base) + reg_eq[1]
q_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + str(base) +"))+" + str(reg_eq[1])
# y = reg_eq[0] * log(x, base) + reg_eq[1]
reg_eq = np.polyfit(x_fit, y, 1)
q_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + \
str(base) + "))+" + str(reg_eq[1])
vals = []
for i in range(len(x)):
@ -653,18 +676,22 @@ def log_regression(x, y, base):
return eq_str, _rms, r2_d2
def exp_regression(x, y, base):
y_fit = []
for i in range(len(y)):
try:
y_fit.append(np.log(y[i]) / np.log(base)) #change of base for logs
# change of base for logs
y_fit.append(np.log(y[i]) / np.log(base))
except:
pass
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit)) # y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
eq_str = "(" + str(base) + "**(" + str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
# y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit))
eq_str = "(" + str(base) + "**(" + \
str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
vals = []
for i in range(len(x)):
@ -680,6 +707,7 @@ def exp_regression(x, y, base):
return eq_str, _rms, r2_d2
def tanh_regression(x, y):
def tanh(x, a, b, c, d):
@ -687,7 +715,8 @@ def tanh_regression(x, y):
return a * np.tanh(b * (x - c)) + d
reg_eq = np.float64(curve_fit(tanh, np.array(x), np.array(y))[0]).tolist()
eq_str = str(reg_eq[0]) + " * np.tanh(" + str(reg_eq[1]) + "*(z - " + str(reg_eq[2]) + ")) + " + str(reg_eq[3])
eq_str = str(reg_eq[0]) + " * np.tanh(" + str(reg_eq[1]) + \
"*(z - " + str(reg_eq[2]) + ")) + " + str(reg_eq[3])
vals = []
for i in range(len(x)):
@ -702,10 +731,12 @@ def tanh_regression(x, y):
return eq_str, _rms, r2_d2
def r_squared(predictions, targets): # assumes equal size inputs
return metrics.r2_score(np.array(targets), np.array(predictions))
def rms(predictions, targets): # assumes equal size inputs
_sum = 0
@ -715,6 +746,7 @@ def rms(predictions, targets): # assumes equal size inputs
return float(math.sqrt(_sum / len(targets)))
def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
# performance overfit = performance(train) - performance(test) where performance is r^2
@ -733,6 +765,7 @@ def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
return r2_train - r2_test
def strip_data(data, mode):
if mode == "adam": # x is the row number, y are the data
@ -744,7 +777,9 @@ def strip_data(data, mode):
else:
raise error("mode error")
def optimize_regression(x, y, _range, resolution):#_range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
# _range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
def optimize_regression(x, y, _range, resolution):
# usage not: for demonstration purpose only, performance is shit
if type(resolution) != int:
raise error("resolution must be int")
@ -810,7 +845,8 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
except:
pass
for i in range (0, len(eqs), 1): #marks all equations where r2 = 1 as they 95% of the time overfit the data
# marks all equations where r2 = 1 as they 95% of the time overfit the data
for i in range(0, len(eqs), 1):
if r2s[i] == 1:
eqs[i] = ""
rmss[i] = ""
@ -832,6 +868,7 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
return eqs, rmss, r2s, overfit
def select_best_regression(eqs, rmss, r2s, overfit, selector):
b_eq = ""
@ -860,11 +897,14 @@ def select_best_regression(eqs, rmss, r2s, overfit, selector):
return b_eq, b_rms, b_r2, b_overfit
def p_value(x, y): # takes 2 1d arrays
return stats.ttest_ind(x, y)[1]
def basic_analysis(data): #assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
# assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
def basic_analysis(data):
row = len(data)
column = []
@ -900,6 +940,7 @@ def benchmark(x, y):
return [(end_g - start_g), (end_a - start_a)]
def generate_data(filename, x, y, low, high):
file = open(filename, "w")
@ -913,9 +954,11 @@ def generate_data(filename, x, y, low, high):
temp = temp + str(random.uniform(low, high))
file.write(temp + "\n")
class StatisticsError(ValueError):
pass
def _sum(data, start=0):
count = 0
n, d = _exact_ratio(start)
@ -936,26 +979,35 @@ def _sum(data, start=0):
total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
return (T, total, count)
def _isfinite(x):
try:
return x.is_finite() # Likely a Decimal.
except AttributeError:
return math.isfinite(x) # Coerces to float first.
def _coerce(T, S):
assert T is not bool, "initial type T is bool"
if T is S: return T
if T is S:
return T
if S is int or S is bool: return T
if T is int: return S
if S is int or S is bool:
return T
if T is int:
return S
if issubclass(S, T): return S
if issubclass(T, S): return T
if issubclass(S, T):
return S
if issubclass(T, S):
return T
if issubclass(T, int): return S
if issubclass(S, int): return T
if issubclass(T, int):
return S
if issubclass(S, int):
return T
if issubclass(T, Fraction) and issubclass(S, float):
return S
@ -965,6 +1017,7 @@ def _coerce(T, S):
msg = "don't know how to coerce %s and %s"
raise TypeError(msg % (T.__name__, S.__name__))
def _exact_ratio(x):
try:
@ -988,6 +1041,7 @@ def _exact_ratio(x):
msg = "can't convert type '{}' to numerator/denominator"
raise TypeError(msg.format(type(x).__name__))
def _convert(value, T):
if type(value) is T:
@ -1004,6 +1058,7 @@ def _convert(value, T):
else:
raise
def _counts(data):
table = collections.Counter(iter(data)).most_common()
@ -1041,6 +1096,7 @@ def _fail_neg(values, errmsg='negative value'):
raise StatisticsError(errmsg)
yield x
def mean(data):
if iter(data) is data:
@ -1052,6 +1108,7 @@ def mean(data):
assert count == n
return _convert(total / n, T)
def median(data):
data = sorted(data)
@ -1064,6 +1121,7 @@ def median(data):
i = n // 2
return (data[i - 1] + data[i]) / 2
def mode(data):
table = _counts(data)
@ -1076,6 +1134,7 @@ def mode(data):
else:
raise StatisticsError('no mode for empty data')
def _ss(data, c=None):
if c is None:
@ -1088,6 +1147,7 @@ def _ss(data, c=None):
assert not total < 0, 'negative sum of square deviations: %f' % total
return (T, total)
def variance(data, xbar=None):
if iter(data) is data:
@ -1098,6 +1158,7 @@ def variance(data, xbar=None):
T, ss = _ss(data, xbar)
return _convert(ss / (n - 1), T)
def stdev(data, xbar=None):
var = variance(data, xbar)

5
data analysis/setup.py Normal file
View File

@ -0,0 +1,5 @@
from distutils.core import setup
from Cython.Build import cythonize
setup(name='analysis',
ext_modules=cythonize("analysis.py"))