mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-28 02:09:08 +00:00
started c-ifying analysis
This commit is contained in:
parent
0d240e3b09
commit
087e201baa
@ -1,15 +1,15 @@
|
|||||||
#Titan Robotics Team 2022: Data Analysis Module
|
# Titan Robotics Team 2022: Data Analysis Module
|
||||||
#Written by Arthur Lu & Jacob Levine
|
# Written by Arthur Lu & Jacob Levine
|
||||||
#Notes:
|
# Notes:
|
||||||
# this should be imported as a python module using 'import analysis'
|
# this should be imported as a python module using 'import analysis'
|
||||||
# this should be included in the local directory or environment variable
|
# this should be included in the local directory or environment variable
|
||||||
# this module has not been optimized for multhreaded computing
|
# this module has not been optimized for multhreaded computing
|
||||||
#number of easter eggs: 2
|
# number of easter eggs: 2
|
||||||
#setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.0.8.005"
|
__version__ = "1.0.8.005"
|
||||||
|
|
||||||
#changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
1.0.8.005:
|
1.0.8.005:
|
||||||
- minor fixes
|
- minor fixes
|
||||||
@ -101,7 +101,7 @@ __changelog__ = """changelog:
|
|||||||
__author__ = (
|
__author__ = (
|
||||||
"Arthur Lu <arthurlu@ttic.edu>, "
|
"Arthur Lu <arthurlu@ttic.edu>, "
|
||||||
"Jacob Levine <jlevine@ttic.edu>,"
|
"Jacob Levine <jlevine@ttic.edu>,"
|
||||||
)
|
)
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
'_init_device',
|
'_init_device',
|
||||||
@ -125,12 +125,12 @@ __all__ = [
|
|||||||
'optimize_regression',
|
'optimize_regression',
|
||||||
'select_best_regression',
|
'select_best_regression',
|
||||||
'basic_analysis',
|
'basic_analysis',
|
||||||
#all statistics functions left out due to integration in other functions
|
# all statistics functions left out due to integration in other functions
|
||||||
]
|
]
|
||||||
|
|
||||||
#now back to your regularly scheduled programming:
|
# now back to your regularly scheduled programming:
|
||||||
|
|
||||||
#imports (now in alphabetical order! v 1.0.3.006):
|
# imports (now in alphabetical order! v 1.0.3.006):
|
||||||
|
|
||||||
from bisect import bisect_left, bisect_right
|
from bisect import bisect_left, bisect_right
|
||||||
import collections
|
import collections
|
||||||
@ -149,14 +149,16 @@ import scipy
|
|||||||
from scipy.optimize import curve_fit
|
from scipy.optimize import curve_fit
|
||||||
from scipy import stats
|
from scipy import stats
|
||||||
from sklearn import *
|
from sklearn import *
|
||||||
#import statistics <-- statistics.py functions have been integrated into analysis.py as of v 1.0.3.002
|
# import statistics <-- statistics.py functions have been integrated into analysis.py as of v 1.0.3.002
|
||||||
import time
|
import time
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
class error(ValueError):
|
class error(ValueError):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def _init_device (setting, arg): #initiates computation device for ANNs
|
|
||||||
|
def _init_device(setting, arg): # initiates computation device for ANNs
|
||||||
if setting == "cuda":
|
if setting == "cuda":
|
||||||
try:
|
try:
|
||||||
return torch.device(setting + ":" + str(arg) if torch.cuda.is_available() else "cpu")
|
return torch.device(setting + ":" + str(arg) if torch.cuda.is_available() else "cpu")
|
||||||
@ -170,6 +172,7 @@ def _init_device (setting, arg): #initiates computation device for ANNs
|
|||||||
else:
|
else:
|
||||||
raise error("specified device does not exist")
|
raise error("specified device does not exist")
|
||||||
|
|
||||||
|
|
||||||
class c_entities:
|
class c_entities:
|
||||||
|
|
||||||
c_names = []
|
c_names = []
|
||||||
@ -190,7 +193,6 @@ class c_entities:
|
|||||||
self.c_logic = logic
|
self.c_logic = logic
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def append(self, n_name, n_id, n_pos, n_property, n_logic):
|
def append(self, n_name, n_id, n_pos, n_property, n_logic):
|
||||||
self.c_names.append(n_name)
|
self.c_names.append(n_name)
|
||||||
self.c_ids.append(n_id)
|
self.c_ids.append(n_id)
|
||||||
@ -232,6 +234,7 @@ class c_entities:
|
|||||||
def regurgitate(self):
|
def regurgitate(self):
|
||||||
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_logic]
|
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_logic]
|
||||||
|
|
||||||
|
|
||||||
class nc_entities:
|
class nc_entities:
|
||||||
|
|
||||||
c_names = []
|
c_names = []
|
||||||
@ -241,7 +244,7 @@ class nc_entities:
|
|||||||
c_effects = []
|
c_effects = []
|
||||||
|
|
||||||
def debug(self):
|
def debug(self):
|
||||||
print ("nc_entities (non-controlable entities) has attributes names, ids, positions, properties, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of positions, 2d array of properties, and 2d array of effects.")
|
print("nc_entities (non-controlable entities) has attributes names, ids, positions, properties, and effects. __init__ takes self, 1d array of names, 1d array of ids, 2d array of positions, 2d array of properties, and 2d array of effects.")
|
||||||
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
|
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
|
||||||
|
|
||||||
def __init__(self, names, ids, pos, properties, effects):
|
def __init__(self, names, ids, pos, properties, effects):
|
||||||
@ -295,6 +298,7 @@ class nc_entities:
|
|||||||
|
|
||||||
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
|
return[self.c_names, self.c_ids, self.c_pos, self.c_properties, self.c_effects]
|
||||||
|
|
||||||
|
|
||||||
class obstacles:
|
class obstacles:
|
||||||
|
|
||||||
c_names = []
|
c_names = []
|
||||||
@ -351,6 +355,7 @@ class obstacles:
|
|||||||
def regurgitate(self):
|
def regurgitate(self):
|
||||||
return[self.c_names, self.c_ids, self.c_perim, self.c_effects]
|
return[self.c_names, self.c_ids, self.c_perim, self.c_effects]
|
||||||
|
|
||||||
|
|
||||||
class objectives:
|
class objectives:
|
||||||
|
|
||||||
c_names = []
|
c_names = []
|
||||||
@ -408,13 +413,16 @@ class objectives:
|
|||||||
def regurgitate(self):
|
def regurgitate(self):
|
||||||
return[self.c_names, self.c_ids, self.c_pos, self.c_effects]
|
return[self.c_names, self.c_ids, self.c_pos, self.c_effects]
|
||||||
|
|
||||||
|
|
||||||
def load_csv(filepath):
|
def load_csv(filepath):
|
||||||
with open(filepath, newline = '') as csvfile:
|
with open(filepath, newline='') as csvfile:
|
||||||
file_array = list(csv.reader(csvfile))
|
file_array = list(csv.reader(csvfile))
|
||||||
csvfile.close()
|
csvfile.close()
|
||||||
return file_array
|
return file_array
|
||||||
|
|
||||||
def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
|
||||||
|
# data=array, mode = ['1d':1d_basic_stats, 'column':c_basic_stats, 'row':r_basic_stats], arg for mode 1 or mode 2 for column or row
|
||||||
|
def basic_stats(data, method, arg):
|
||||||
|
|
||||||
if method == 'debug':
|
if method == 'debug':
|
||||||
return "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]"
|
return "basic_stats requires 3 args: data, mode, arg; where data is data to be analyzed, mode is an int from 0 - 2 depending on type of analysis (by column or by row) and is only applicable to 2d arrays (for 1d arrays use mode 1), and arg is row/column number for mode 1 or mode 2; function returns: [mean, median, mode, stdev, variance]"
|
||||||
@ -423,7 +431,7 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
|
|||||||
|
|
||||||
data_t = []
|
data_t = []
|
||||||
|
|
||||||
for i in range (0, len(data), 1):
|
for i in range(0, len(data), 1):
|
||||||
data_t.append(float(data[i]))
|
data_t.append(float(data[i]))
|
||||||
|
|
||||||
_mean = mean(data_t)
|
_mean = mean(data_t)
|
||||||
@ -498,11 +506,15 @@ def basic_stats(data, method, arg): # data=array, mode = ['1d':1d_basic_stats, '
|
|||||||
else:
|
else:
|
||||||
raise error("method error")
|
raise error("method error")
|
||||||
|
|
||||||
def z_score(point, mean, stdev): #returns z score with inputs of point, mean and standard deviation of spread
|
|
||||||
score = (point - mean)/stdev
|
# returns z score with inputs of point, mean and standard deviation of spread
|
||||||
|
def z_score(point, mean, stdev):
|
||||||
|
score = (point - mean) / stdev
|
||||||
return score
|
return score
|
||||||
|
|
||||||
def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
|
|
||||||
|
# mode is either 'x' or 'y' or 'both' depending on the variable(s) to be normalized
|
||||||
|
def z_normalize(x, y, mode):
|
||||||
|
|
||||||
x_norm = []
|
x_norm = []
|
||||||
y_norm = []
|
y_norm = []
|
||||||
@ -513,7 +525,7 @@ def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on t
|
|||||||
if mode == 'x':
|
if mode == 'x':
|
||||||
_mean, _median, _mode, _stdev, _variance = basic_stats(x, "1d", 0)
|
_mean, _median, _mode, _stdev, _variance = basic_stats(x, "1d", 0)
|
||||||
|
|
||||||
for i in range (0, len(x), 1):
|
for i in range(0, len(x), 1):
|
||||||
x_norm.append(z_score(x[i], _mean, _stdev))
|
x_norm.append(z_score(x[i], _mean, _stdev))
|
||||||
|
|
||||||
return x_norm, y
|
return x_norm, y
|
||||||
@ -521,7 +533,7 @@ def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on t
|
|||||||
if mode == 'y':
|
if mode == 'y':
|
||||||
_mean, _median, _mode, _stdev, _variance = basic_stats(y, "1d", 0)
|
_mean, _median, _mode, _stdev, _variance = basic_stats(y, "1d", 0)
|
||||||
|
|
||||||
for i in range (0, len(y), 1):
|
for i in range(0, len(y), 1):
|
||||||
y_norm.append(z_score(y[i], _mean, _stdev))
|
y_norm.append(z_score(y[i], _mean, _stdev))
|
||||||
|
|
||||||
return x, y_norm
|
return x, y_norm
|
||||||
@ -529,12 +541,12 @@ def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on t
|
|||||||
if mode == 'both':
|
if mode == 'both':
|
||||||
_mean, _median, _mode, _stdev, _variance = basic_stats(x, "1d", 0)
|
_mean, _median, _mode, _stdev, _variance = basic_stats(x, "1d", 0)
|
||||||
|
|
||||||
for i in range (0, len(x), 1):
|
for i in range(0, len(x), 1):
|
||||||
x_norm.append(z_score(x[i], _mean, _stdev))
|
x_norm.append(z_score(x[i], _mean, _stdev))
|
||||||
|
|
||||||
_mean, _median, _mode, _stdev, _variance = basic_stats(y, "1d", 0)
|
_mean, _median, _mode, _stdev, _variance = basic_stats(y, "1d", 0)
|
||||||
|
|
||||||
for i in range (0, len(y), 1):
|
for i in range(0, len(y), 1):
|
||||||
y_norm.append(z_score(y[i], _mean, _stdev))
|
y_norm.append(z_score(y[i], _mean, _stdev))
|
||||||
|
|
||||||
return x_norm, y_norm
|
return x_norm, y_norm
|
||||||
@ -543,19 +555,23 @@ def z_normalize(x, y, mode): #mode is either 'x' or 'y' or 'both' depending on t
|
|||||||
|
|
||||||
return error('method error')
|
return error('method error')
|
||||||
|
|
||||||
def stdev_z_split(mean, stdev, delta, low_bound, high_bound): #returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
|
|
||||||
|
# returns n-th percentile of spread given mean, standard deviation, lower z-score, and upper z-score
|
||||||
|
def stdev_z_split(mean, stdev, delta, low_bound, high_bound):
|
||||||
|
|
||||||
z_split = []
|
z_split = []
|
||||||
i = low_bound
|
i = low_bound
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) * math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
|
z_split.append(float((1 / (stdev * math.sqrt(2 * math.pi))) *
|
||||||
|
math.e ** (-0.5 * (((i - mean) / stdev) ** 2))))
|
||||||
i = i + delta
|
i = i + delta
|
||||||
if i > high_bound:
|
if i > high_bound:
|
||||||
break
|
break
|
||||||
|
|
||||||
return z_split
|
return z_split
|
||||||
|
|
||||||
|
|
||||||
def histo_analysis(hist_data, delta, low_bound, high_bound):
|
def histo_analysis(hist_data, delta, low_bound, high_bound):
|
||||||
|
|
||||||
if hist_data == 'debug':
|
if hist_data == 'debug':
|
||||||
@ -565,12 +581,12 @@ def histo_analysis(hist_data, delta, low_bound, high_bound):
|
|||||||
|
|
||||||
for i in range(0, len(hist_data), 1):
|
for i in range(0, len(hist_data), 1):
|
||||||
try:
|
try:
|
||||||
derivative.append(float(hist_data[i - 1]) - float(hist_data [i]))
|
derivative.append(float(hist_data[i - 1]) - float(hist_data[i]))
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
derivative_sorted = sorted(derivative, key=int)
|
derivative_sorted = sorted(derivative, key=int)
|
||||||
mean_derivative = basic_stats(derivative_sorted,"1d", 0)[0]
|
mean_derivative = basic_stats(derivative_sorted, "1d", 0)[0]
|
||||||
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
|
stdev_derivative = basic_stats(derivative_sorted, "1d", 0)[3]
|
||||||
|
|
||||||
predictions = []
|
predictions = []
|
||||||
@ -593,23 +609,26 @@ def histo_analysis(hist_data, delta, low_bound, high_bound):
|
|||||||
|
|
||||||
return predictions
|
return predictions
|
||||||
|
|
||||||
|
|
||||||
def poly_regression(x, y, power):
|
def poly_regression(x, y, power):
|
||||||
|
|
||||||
if x == "null": #if x is 'null', then x will be filled with integer points between 1 and the size of y
|
if x == "null": # if x is 'null', then x will be filled with integer points between 1 and the size of y
|
||||||
x = []
|
x = []
|
||||||
|
|
||||||
for i in range(len(y)):
|
for i in range(len(y)):
|
||||||
print(i)
|
print(i)
|
||||||
x.append(i+1)
|
x.append(i + 1)
|
||||||
|
|
||||||
reg_eq = scipy.polyfit(x, y, deg = power)
|
reg_eq = scipy.polyfit(x, y, deg=power)
|
||||||
eq_str = ""
|
eq_str = ""
|
||||||
|
|
||||||
for i in range(0, len(reg_eq), 1):
|
for i in range(0, len(reg_eq), 1):
|
||||||
if i < len(reg_eq)- 1:
|
if i < len(reg_eq) - 1:
|
||||||
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")+"
|
eq_str = eq_str + str(reg_eq[i]) + \
|
||||||
|
"*(z**" + str(len(reg_eq) - i - 1) + ")+"
|
||||||
else:
|
else:
|
||||||
eq_str = eq_str + str(reg_eq[i]) + "*(z**" + str(len(reg_eq) - i - 1) + ")"
|
eq_str = eq_str + str(reg_eq[i]) + \
|
||||||
|
"*(z**" + str(len(reg_eq) - i - 1) + ")"
|
||||||
|
|
||||||
vals = []
|
vals = []
|
||||||
|
|
||||||
@ -626,18 +645,22 @@ def poly_regression(x, y, power):
|
|||||||
|
|
||||||
return [eq_str, _rms, r2_d2]
|
return [eq_str, _rms, r2_d2]
|
||||||
|
|
||||||
|
|
||||||
def log_regression(x, y, base):
|
def log_regression(x, y, base):
|
||||||
|
|
||||||
x_fit = []
|
x_fit = []
|
||||||
|
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
try:
|
try:
|
||||||
x_fit.append(np.log(x[i]) / np.log(base)) #change of base for logs
|
# change of base for logs
|
||||||
|
x_fit.append(np.log(x[i]) / np.log(base))
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
reg_eq = np.polyfit(x_fit, y, 1) # y = reg_eq[0] * log(x, base) + reg_eq[1]
|
# y = reg_eq[0] * log(x, base) + reg_eq[1]
|
||||||
q_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + str(base) +"))+" + str(reg_eq[1])
|
reg_eq = np.polyfit(x_fit, y, 1)
|
||||||
|
q_str = str(reg_eq[0]) + "* (np.log(z) / np.log(" + \
|
||||||
|
str(base) + "))+" + str(reg_eq[1])
|
||||||
vals = []
|
vals = []
|
||||||
|
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
@ -653,18 +676,22 @@ def log_regression(x, y, base):
|
|||||||
|
|
||||||
return eq_str, _rms, r2_d2
|
return eq_str, _rms, r2_d2
|
||||||
|
|
||||||
|
|
||||||
def exp_regression(x, y, base):
|
def exp_regression(x, y, base):
|
||||||
|
|
||||||
y_fit = []
|
y_fit = []
|
||||||
|
|
||||||
for i in range(len(y)):
|
for i in range(len(y)):
|
||||||
try:
|
try:
|
||||||
y_fit.append(np.log(y[i]) / np.log(base)) #change of base for logs
|
# change of base for logs
|
||||||
|
y_fit.append(np.log(y[i]) / np.log(base))
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit)) # y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
|
# y = base ^ (reg_eq[0] * x) * base ^ (reg_eq[1])
|
||||||
eq_str = "(" + str(base) + "**(" + str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
|
reg_eq = np.polyfit(x, y_fit, 1, w=np.sqrt(y_fit))
|
||||||
|
eq_str = "(" + str(base) + "**(" + \
|
||||||
|
str(reg_eq[0]) + "*z))*(" + str(base) + "**(" + str(reg_eq[1]) + "))"
|
||||||
vals = []
|
vals = []
|
||||||
|
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
@ -680,14 +707,16 @@ def exp_regression(x, y, base):
|
|||||||
|
|
||||||
return eq_str, _rms, r2_d2
|
return eq_str, _rms, r2_d2
|
||||||
|
|
||||||
|
|
||||||
def tanh_regression(x, y):
|
def tanh_regression(x, y):
|
||||||
|
|
||||||
def tanh (x, a, b, c, d):
|
def tanh(x, a, b, c, d):
|
||||||
|
|
||||||
return a * np.tanh(b * (x - c)) + d
|
return a * np.tanh(b * (x - c)) + d
|
||||||
|
|
||||||
reg_eq = np.float64(curve_fit(tanh, np.array(x), np.array(y))[0]).tolist()
|
reg_eq = np.float64(curve_fit(tanh, np.array(x), np.array(y))[0]).tolist()
|
||||||
eq_str = str(reg_eq[0]) + " * np.tanh(" + str(reg_eq[1]) + "*(z - " + str(reg_eq[2]) + ")) + " + str(reg_eq[3])
|
eq_str = str(reg_eq[0]) + " * np.tanh(" + str(reg_eq[1]) + \
|
||||||
|
"*(z - " + str(reg_eq[2]) + ")) + " + str(reg_eq[3])
|
||||||
vals = []
|
vals = []
|
||||||
|
|
||||||
for i in range(len(x)):
|
for i in range(len(x)):
|
||||||
@ -702,10 +731,12 @@ def tanh_regression(x, y):
|
|||||||
|
|
||||||
return eq_str, _rms, r2_d2
|
return eq_str, _rms, r2_d2
|
||||||
|
|
||||||
|
|
||||||
def r_squared(predictions, targets): # assumes equal size inputs
|
def r_squared(predictions, targets): # assumes equal size inputs
|
||||||
|
|
||||||
return metrics.r2_score(np.array(targets), np.array(predictions))
|
return metrics.r2_score(np.array(targets), np.array(predictions))
|
||||||
|
|
||||||
|
|
||||||
def rms(predictions, targets): # assumes equal size inputs
|
def rms(predictions, targets): # assumes equal size inputs
|
||||||
|
|
||||||
_sum = 0
|
_sum = 0
|
||||||
@ -713,12 +744,13 @@ def rms(predictions, targets): # assumes equal size inputs
|
|||||||
for i in range(0, len(targets), 1):
|
for i in range(0, len(targets), 1):
|
||||||
_sum = (targets[i] - predictions[i]) ** 2
|
_sum = (targets[i] - predictions[i]) ** 2
|
||||||
|
|
||||||
return float(math.sqrt(_sum/len(targets)))
|
return float(math.sqrt(_sum / len(targets)))
|
||||||
|
|
||||||
|
|
||||||
def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
|
def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
|
||||||
|
|
||||||
#performance overfit = performance(train) - performance(test) where performance is r^2
|
# performance overfit = performance(train) - performance(test) where performance is r^2
|
||||||
#error overfit = error(train) - error(test) where error is rms; biased towards smaller values
|
# error overfit = error(train) - error(test) where error is rms; biased towards smaller values
|
||||||
|
|
||||||
vals = []
|
vals = []
|
||||||
|
|
||||||
@ -733,19 +765,22 @@ def calc_overfit(equation, rms_train, r2_train, x_test, y_test):
|
|||||||
|
|
||||||
return r2_train - r2_test
|
return r2_train - r2_test
|
||||||
|
|
||||||
|
|
||||||
def strip_data(data, mode):
|
def strip_data(data, mode):
|
||||||
|
|
||||||
if mode == "adam": #x is the row number, y are the data
|
if mode == "adam": # x is the row number, y are the data
|
||||||
pass
|
pass
|
||||||
|
|
||||||
if mode == "eve": #x are the data, y is the column number
|
if mode == "eve": # x are the data, y is the column number
|
||||||
pass
|
pass
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise error("mode error")
|
raise error("mode error")
|
||||||
|
|
||||||
def optimize_regression(x, y, _range, resolution):#_range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
|
|
||||||
#usage not: for demonstration purpose only, performance is shit
|
# _range in poly regression is the range of powers tried, and in log/exp it is the inverse of the stepsize taken from -1000 to 1000
|
||||||
|
def optimize_regression(x, y, _range, resolution):
|
||||||
|
# usage not: for demonstration purpose only, performance is shit
|
||||||
if type(resolution) != int:
|
if type(resolution) != int:
|
||||||
raise error("resolution must be int")
|
raise error("resolution must be int")
|
||||||
|
|
||||||
@ -758,7 +793,7 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
|||||||
x_test = []
|
x_test = []
|
||||||
y_test = []
|
y_test = []
|
||||||
|
|
||||||
for i in range (0, math.floor(len(x) * 0.5), 1):
|
for i in range(0, math.floor(len(x) * 0.5), 1):
|
||||||
index = random.randint(0, len(x) - 1)
|
index = random.randint(0, len(x) - 1)
|
||||||
|
|
||||||
x_test.append(x[index])
|
x_test.append(x[index])
|
||||||
@ -774,7 +809,7 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
|||||||
rmss = []
|
rmss = []
|
||||||
r2s = []
|
r2s = []
|
||||||
|
|
||||||
for i in range (0, _range + 1, 1):
|
for i in range(0, _range + 1, 1):
|
||||||
try:
|
try:
|
||||||
x, y, z = poly_regression(x_train, y_train, i)
|
x, y, z = poly_regression(x_train, y_train, i)
|
||||||
eqs.append(x)
|
eqs.append(x)
|
||||||
@ -783,7 +818,7 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
|||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
for i in range (1, 100 * resolution + 1):
|
for i in range(1, 100 * resolution + 1):
|
||||||
try:
|
try:
|
||||||
x, y, z = exp_regression(x_train, y_train, float(i / resolution))
|
x, y, z = exp_regression(x_train, y_train, float(i / resolution))
|
||||||
eqs.append(x)
|
eqs.append(x)
|
||||||
@ -792,7 +827,7 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
|||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
for i in range (1, 100 * resolution + 1):
|
for i in range(1, 100 * resolution + 1):
|
||||||
try:
|
try:
|
||||||
x, y, z = log_regression(x_train, y_train, float(i / resolution))
|
x, y, z = log_regression(x_train, y_train, float(i / resolution))
|
||||||
eqs.append(x)
|
eqs.append(x)
|
||||||
@ -810,13 +845,14 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
|||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
for i in range (0, len(eqs), 1): #marks all equations where r2 = 1 as they 95% of the time overfit the data
|
# marks all equations where r2 = 1 as they 95% of the time overfit the data
|
||||||
|
for i in range(0, len(eqs), 1):
|
||||||
if r2s[i] == 1:
|
if r2s[i] == 1:
|
||||||
eqs[i] = ""
|
eqs[i] = ""
|
||||||
rmss[i] = ""
|
rmss[i] = ""
|
||||||
r2s[i] = ""
|
r2s[i] = ""
|
||||||
|
|
||||||
while True: #removes all equations marked for removal
|
while True: # removes all equations marked for removal
|
||||||
try:
|
try:
|
||||||
eqs.remove('')
|
eqs.remove('')
|
||||||
rmss.remove('')
|
rmss.remove('')
|
||||||
@ -826,12 +862,13 @@ def optimize_regression(x, y, _range, resolution):#_range in poly regression is
|
|||||||
|
|
||||||
overfit = []
|
overfit = []
|
||||||
|
|
||||||
for i in range (0, len(eqs), 1):
|
for i in range(0, len(eqs), 1):
|
||||||
|
|
||||||
overfit.append(calc_overfit(eqs[i], rmss[i], r2s[i], x_test, y_test))
|
overfit.append(calc_overfit(eqs[i], rmss[i], r2s[i], x_test, y_test))
|
||||||
|
|
||||||
return eqs, rmss, r2s, overfit
|
return eqs, rmss, r2s, overfit
|
||||||
|
|
||||||
|
|
||||||
def select_best_regression(eqs, rmss, r2s, overfit, selector):
|
def select_best_regression(eqs, rmss, r2s, overfit, selector):
|
||||||
|
|
||||||
b_eq = ""
|
b_eq = ""
|
||||||
@ -860,11 +897,14 @@ def select_best_regression(eqs, rmss, r2s, overfit, selector):
|
|||||||
|
|
||||||
return b_eq, b_rms, b_r2, b_overfit
|
return b_eq, b_rms, b_r2, b_overfit
|
||||||
|
|
||||||
def p_value(x, y): #takes 2 1d arrays
|
|
||||||
|
def p_value(x, y): # takes 2 1d arrays
|
||||||
|
|
||||||
return stats.ttest_ind(x, y)[1]
|
return stats.ttest_ind(x, y)[1]
|
||||||
|
|
||||||
def basic_analysis(data): #assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
|
|
||||||
|
# assumes that rows are the independent variable and columns are the dependant. also assumes that time flows from lowest column to highest column.
|
||||||
|
def basic_analysis(data):
|
||||||
|
|
||||||
row = len(data)
|
row = len(data)
|
||||||
column = []
|
column = []
|
||||||
@ -900,22 +940,25 @@ def benchmark(x, y):
|
|||||||
|
|
||||||
return [(end_g - start_g), (end_a - start_a)]
|
return [(end_g - start_g), (end_a - start_a)]
|
||||||
|
|
||||||
|
|
||||||
def generate_data(filename, x, y, low, high):
|
def generate_data(filename, x, y, low, high):
|
||||||
|
|
||||||
file = open(filename, "w")
|
file = open(filename, "w")
|
||||||
|
|
||||||
for i in range (0, y, 1):
|
for i in range(0, y, 1):
|
||||||
temp = ""
|
temp = ""
|
||||||
|
|
||||||
for j in range (0, x - 1, 1):
|
for j in range(0, x - 1, 1):
|
||||||
temp = str(random.uniform(low, high)) + "," + temp
|
temp = str(random.uniform(low, high)) + "," + temp
|
||||||
|
|
||||||
temp = temp + str(random.uniform(low, high))
|
temp = temp + str(random.uniform(low, high))
|
||||||
file.write(temp + "\n")
|
file.write(temp + "\n")
|
||||||
|
|
||||||
|
|
||||||
class StatisticsError(ValueError):
|
class StatisticsError(ValueError):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
def _sum(data, start=0):
|
def _sum(data, start=0):
|
||||||
count = 0
|
count = 0
|
||||||
n, d = _exact_ratio(start)
|
n, d = _exact_ratio(start)
|
||||||
@ -924,7 +967,7 @@ def _sum(data, start=0):
|
|||||||
T = _coerce(int, type(start))
|
T = _coerce(int, type(start))
|
||||||
for typ, values in groupby(data, type):
|
for typ, values in groupby(data, type):
|
||||||
T = _coerce(T, typ) # or raise TypeError
|
T = _coerce(T, typ) # or raise TypeError
|
||||||
for n,d in map(_exact_ratio, values):
|
for n, d in map(_exact_ratio, values):
|
||||||
count += 1
|
count += 1
|
||||||
partials[d] = partials_get(d, 0) + n
|
partials[d] = partials_get(d, 0) + n
|
||||||
if None in partials:
|
if None in partials:
|
||||||
@ -936,26 +979,35 @@ def _sum(data, start=0):
|
|||||||
total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
|
total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
|
||||||
return (T, total, count)
|
return (T, total, count)
|
||||||
|
|
||||||
|
|
||||||
def _isfinite(x):
|
def _isfinite(x):
|
||||||
try:
|
try:
|
||||||
return x.is_finite() # Likely a Decimal.
|
return x.is_finite() # Likely a Decimal.
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
return math.isfinite(x) # Coerces to float first.
|
return math.isfinite(x) # Coerces to float first.
|
||||||
|
|
||||||
|
|
||||||
def _coerce(T, S):
|
def _coerce(T, S):
|
||||||
|
|
||||||
assert T is not bool, "initial type T is bool"
|
assert T is not bool, "initial type T is bool"
|
||||||
|
|
||||||
if T is S: return T
|
if T is S:
|
||||||
|
return T
|
||||||
|
|
||||||
if S is int or S is bool: return T
|
if S is int or S is bool:
|
||||||
if T is int: return S
|
return T
|
||||||
|
if T is int:
|
||||||
|
return S
|
||||||
|
|
||||||
if issubclass(S, T): return S
|
if issubclass(S, T):
|
||||||
if issubclass(T, S): return T
|
return S
|
||||||
|
if issubclass(T, S):
|
||||||
|
return T
|
||||||
|
|
||||||
if issubclass(T, int): return S
|
if issubclass(T, int):
|
||||||
if issubclass(S, int): return T
|
return S
|
||||||
|
if issubclass(S, int):
|
||||||
|
return T
|
||||||
|
|
||||||
if issubclass(T, Fraction) and issubclass(S, float):
|
if issubclass(T, Fraction) and issubclass(S, float):
|
||||||
return S
|
return S
|
||||||
@ -965,6 +1017,7 @@ def _coerce(T, S):
|
|||||||
msg = "don't know how to coerce %s and %s"
|
msg = "don't know how to coerce %s and %s"
|
||||||
raise TypeError(msg % (T.__name__, S.__name__))
|
raise TypeError(msg % (T.__name__, S.__name__))
|
||||||
|
|
||||||
|
|
||||||
def _exact_ratio(x):
|
def _exact_ratio(x):
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -988,6 +1041,7 @@ def _exact_ratio(x):
|
|||||||
msg = "can't convert type '{}' to numerator/denominator"
|
msg = "can't convert type '{}' to numerator/denominator"
|
||||||
raise TypeError(msg.format(type(x).__name__))
|
raise TypeError(msg.format(type(x).__name__))
|
||||||
|
|
||||||
|
|
||||||
def _convert(value, T):
|
def _convert(value, T):
|
||||||
|
|
||||||
if type(value) is T:
|
if type(value) is T:
|
||||||
@ -1000,10 +1054,11 @@ def _convert(value, T):
|
|||||||
return T(value)
|
return T(value)
|
||||||
except TypeError:
|
except TypeError:
|
||||||
if issubclass(T, Decimal):
|
if issubclass(T, Decimal):
|
||||||
return T(value.numerator)/T(value.denominator)
|
return T(value.numerator) / T(value.denominator)
|
||||||
else:
|
else:
|
||||||
raise
|
raise
|
||||||
|
|
||||||
|
|
||||||
def _counts(data):
|
def _counts(data):
|
||||||
|
|
||||||
table = collections.Counter(iter(data)).most_common()
|
table = collections.Counter(iter(data)).most_common()
|
||||||
@ -1029,8 +1084,8 @@ def _find_lteq(a, x):
|
|||||||
def _find_rteq(a, l, x):
|
def _find_rteq(a, l, x):
|
||||||
|
|
||||||
i = bisect_right(a, x, lo=l)
|
i = bisect_right(a, x, lo=l)
|
||||||
if i != (len(a)+1) and a[i-1] == x:
|
if i != (len(a) + 1) and a[i - 1] == x:
|
||||||
return i-1
|
return i - 1
|
||||||
raise ValueError
|
raise ValueError
|
||||||
|
|
||||||
|
|
||||||
@ -1041,6 +1096,7 @@ def _fail_neg(values, errmsg='negative value'):
|
|||||||
raise StatisticsError(errmsg)
|
raise StatisticsError(errmsg)
|
||||||
yield x
|
yield x
|
||||||
|
|
||||||
|
|
||||||
def mean(data):
|
def mean(data):
|
||||||
|
|
||||||
if iter(data) is data:
|
if iter(data) is data:
|
||||||
@ -1050,7 +1106,8 @@ def mean(data):
|
|||||||
raise StatisticsError('mean requires at least one data point')
|
raise StatisticsError('mean requires at least one data point')
|
||||||
T, total, count = _sum(data)
|
T, total, count = _sum(data)
|
||||||
assert count == n
|
assert count == n
|
||||||
return _convert(total/n, T)
|
return _convert(total / n, T)
|
||||||
|
|
||||||
|
|
||||||
def median(data):
|
def median(data):
|
||||||
|
|
||||||
@ -1058,11 +1115,12 @@ def median(data):
|
|||||||
n = len(data)
|
n = len(data)
|
||||||
if n == 0:
|
if n == 0:
|
||||||
raise StatisticsError("no median for empty data")
|
raise StatisticsError("no median for empty data")
|
||||||
if n%2 == 1:
|
if n % 2 == 1:
|
||||||
return data[n//2]
|
return data[n // 2]
|
||||||
else:
|
else:
|
||||||
i = n//2
|
i = n // 2
|
||||||
return (data[i - 1] + data[i])/2
|
return (data[i - 1] + data[i]) / 2
|
||||||
|
|
||||||
|
|
||||||
def mode(data):
|
def mode(data):
|
||||||
|
|
||||||
@ -1076,18 +1134,20 @@ def mode(data):
|
|||||||
else:
|
else:
|
||||||
raise StatisticsError('no mode for empty data')
|
raise StatisticsError('no mode for empty data')
|
||||||
|
|
||||||
|
|
||||||
def _ss(data, c=None):
|
def _ss(data, c=None):
|
||||||
|
|
||||||
if c is None:
|
if c is None:
|
||||||
c = mean(data)
|
c = mean(data)
|
||||||
T, total, count = _sum((x-c)**2 for x in data)
|
T, total, count = _sum((x - c)**2 for x in data)
|
||||||
|
|
||||||
U, total2, count2 = _sum((x-c) for x in data)
|
U, total2, count2 = _sum((x - c) for x in data)
|
||||||
assert T == U and count == count2
|
assert T == U and count == count2
|
||||||
total -= total2**2/len(data)
|
total -= total2**2 / len(data)
|
||||||
assert not total < 0, 'negative sum of square deviations: %f' % total
|
assert not total < 0, 'negative sum of square deviations: %f' % total
|
||||||
return (T, total)
|
return (T, total)
|
||||||
|
|
||||||
|
|
||||||
def variance(data, xbar=None):
|
def variance(data, xbar=None):
|
||||||
|
|
||||||
if iter(data) is data:
|
if iter(data) is data:
|
||||||
@ -1096,7 +1156,8 @@ def variance(data, xbar=None):
|
|||||||
if n < 2:
|
if n < 2:
|
||||||
raise StatisticsError('variance requires at least two data points')
|
raise StatisticsError('variance requires at least two data points')
|
||||||
T, ss = _ss(data, xbar)
|
T, ss = _ss(data, xbar)
|
||||||
return _convert(ss/(n-1), T)
|
return _convert(ss / (n - 1), T)
|
||||||
|
|
||||||
|
|
||||||
def stdev(data, xbar=None):
|
def stdev(data, xbar=None):
|
||||||
|
|
||||||
|
Binary file not shown.
Binary file not shown.
BIN
data analysis/build/temp.win-amd64-3.7/Release/analysis.obj
Normal file
BIN
data analysis/build/temp.win-amd64-3.7/Release/analysis.obj
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
data analysis/build/temp.win-amd64-3.7/Release/c_analysis.obj
Normal file
BIN
data analysis/build/temp.win-amd64-3.7/Release/c_analysis.obj
Normal file
Binary file not shown.
5
data analysis/setup.py
Normal file
5
data analysis/setup.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
from distutils.core import setup
|
||||||
|
from Cython.Build import cythonize
|
||||||
|
|
||||||
|
setup(name='analysis',
|
||||||
|
ext_modules=cythonize("analysis.py"))
|
Loading…
Reference in New Issue
Block a user