mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
Add files via upload
This commit is contained in:
parent
b8ad0032fd
commit
08232f980d
@ -1,7 +1,7 @@
|
|||||||
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||||||
# Written by Arthur Lu & Jacob Levine
|
# Written by Arthur Lu & Jacob Levine
|
||||||
# Notes:
|
# Notes:
|
||||||
# this should be imported as a python module using 'import regression'
|
# this should be imported as a python module using 'import cudaregress'
|
||||||
# this should be included in the local directory or environment variable
|
# this should be included in the local directory or environment variable
|
||||||
# this module is cuda-optimized and vectorized (except for one small part)
|
# this module is cuda-optimized and vectorized (except for one small part)
|
||||||
# setup:
|
# setup:
|
||||||
@ -12,7 +12,8 @@ __version__ = "1.0.0.002"
|
|||||||
__changelog__ = """
|
__changelog__ = """
|
||||||
1.0.0.002:
|
1.0.0.002:
|
||||||
-Added more parameters to log, exponential, polynomial
|
-Added more parameters to log, exponential, polynomial
|
||||||
-
|
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||||||
|
to train the scaling and shifting of sigmoids
|
||||||
|
|
||||||
1.0.0.001:
|
1.0.0.001:
|
||||||
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||||||
@ -56,7 +57,7 @@ def factorial(n):
|
|||||||
def num_poly_terms(num_vars, power):
|
def num_poly_terms(num_vars, power):
|
||||||
if power == 0:
|
if power == 0:
|
||||||
return 0
|
return 0
|
||||||
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + nt(num_vars, power-1)
|
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
|
||||||
|
|
||||||
def take_all_pwrs(vec,pwr):
|
def take_all_pwrs(vec,pwr):
|
||||||
#todo: vectorize (kinda)
|
#todo: vectorize (kinda)
|
||||||
@ -106,7 +107,7 @@ class SigmoidalRegKernelArthur():
|
|||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.out_bias==torch.rand(1, requires_grad=True, device=device)
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
def forward(self,mtx):
|
def forward(self,mtx):
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
@ -123,7 +124,7 @@ class LogRegKernel():
|
|||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.out_bias==torch.rand(1, requires_grad=True, device=device)
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
def forward(self,mtx):
|
def forward(self,mtx):
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
@ -140,7 +141,7 @@ class ExpRegKernel():
|
|||||||
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||||||
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.out_bias==torch.rand(1, requires_grad=True, device=device)
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||||||
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||||||
def forward(self,mtx):
|
def forward(self,mtx):
|
||||||
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||||||
|
Loading…
Reference in New Issue
Block a user