analysis.py v 1.1.13.006

regression.py v 1.0.0.003
analysis pkg v 1.0.0.8
This commit is contained in:
ltcptgeneral 2020-03-08 16:48:19 -05:00
parent 40e5899972
commit 04141bbec8
12 changed files with 70 additions and 51 deletions

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1 Metadata-Version: 2.1
Name: analysis Name: analysis
Version: 1.0.0.7 Version: 1.0.0.8
Summary: analysis package developed by Titan Scouting for The Red Alliance Summary: analysis package developed by Titan Scouting for The Red Alliance
Home-page: https://github.com/titanscout2022/tr2022-strategy Home-page: https://github.com/titanscout2022/tr2022-strategy
Author: The Titan Scouting Team Author: The Titan Scouting Team

View File

@ -8,4 +8,5 @@ analysis/visualization.py
analysis.egg-info/PKG-INFO analysis.egg-info/PKG-INFO
analysis.egg-info/SOURCES.txt analysis.egg-info/SOURCES.txt
analysis.egg-info/dependency_links.txt analysis.egg-info/dependency_links.txt
analysis.egg-info/requires.txt
analysis.egg-info/top_level.txt analysis.egg-info/top_level.txt

View File

@ -0,0 +1,6 @@
numba
numpy
scipy
scikit-learn
six
matplotlib

View File

@ -7,10 +7,12 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.13.005" __version__ = "1.1.13.006"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.13.006:
- cleaned up imports
1.1.13.005: 1.1.13.005:
- cleaned up package - cleaned up package
1.1.13.004: 1.1.13.004:
@ -283,10 +285,7 @@ import scipy
from scipy import * from scipy import *
import sklearn import sklearn
from sklearn import * from sklearn import *
try:
from analysis import trueskill as Trueskill from analysis import trueskill as Trueskill
except:
import trueskill as Trueskill
class error(ValueError): class error(ValueError):
pass pass

View File

@ -5,10 +5,13 @@
# this module is cuda-optimized and vectorized (except for one small part) # this module is cuda-optimized and vectorized (except for one small part)
# setup: # setup:
__version__ = "1.0.0.003" __version__ = "1.0.0.004"
# changelog should be viewed using print(analysis.regression.__changelog__) # changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """ __changelog__ = """
1.0.0.004:
- bug fixes
- fixed changelog
1.0.0.003: 1.0.0.003:
- bug fixes - bug fixes
1.0.0.002: 1.0.0.002:
@ -40,6 +43,8 @@ __all__ = [
'CustomTrain' 'CustomTrain'
] ]
import torch
global device global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu" device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"

View File

@ -7,10 +7,20 @@
# current benchmark of optimization: 1.33 times faster # current benchmark of optimization: 1.33 times faster
# setup: # setup:
__version__ = "1.1.13.001" __version__ = "1.1.13.006"
# changelog should be viewed using print(analysis.__changelog__) # changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog: __changelog__ = """changelog:
1.1.13.006:
- cleaned up imports
1.1.13.005:
- cleaned up package
1.1.13.004:
- small fixes to regression to improve performance
1.1.13.003:
- filtered nans from regression
1.1.13.002:
- removed torch requirement, and moved Regression back to regression.py
1.1.13.001: 1.1.13.001:
- bug fix with linear regression not returning a proper value - bug fix with linear regression not returning a proper value
- cleaned up regression - cleaned up regression
@ -239,7 +249,6 @@ __author__ = (
) )
__all__ = [ __all__ = [
'_init_device',
'load_csv', 'load_csv',
'basic_stats', 'basic_stats',
'z_score', 'z_score',
@ -260,7 +269,6 @@ __all__ = [
'SVM', 'SVM',
'random_forest_classifier', 'random_forest_classifier',
'random_forest_regressor', 'random_forest_regressor',
'Regression',
'Glicko2', 'Glicko2',
# all statistics functions left out due to integration in other functions # all statistics functions left out due to integration in other functions
] ]
@ -273,15 +281,11 @@ import csv
import numba import numba
from numba import jit from numba import jit
import numpy as np import numpy as np
import math
import scipy import scipy
from scipy import * from scipy import *
import sklearn import sklearn
from sklearn import * from sklearn import *
try:
from analysis import trueskill as Trueskill from analysis import trueskill as Trueskill
except:
import trueskill as Trueskill
class error(ValueError): class error(ValueError):
pass pass
@ -344,15 +348,15 @@ def histo_analysis(hist_data):
def regression(inputs, outputs, args): # inputs, outputs expects N-D array def regression(inputs, outputs, args): # inputs, outputs expects N-D array
X = np.array(inputs)
y = np.array(outputs)
regressions = [] regressions = []
if 'lin' in args: # formula: ax + b if 'lin' in args: # formula: ax + b
try: try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b): def func(x, a, b):
return a * x + b return a * x + b
@ -369,9 +373,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
try: try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b, c, d): def func(x, a, b, c, d):
return a * np.log(b*(x + c)) + d return a * np.log(b*(x + c)) + d
@ -388,9 +389,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
try: try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b, c, d): def func(x, a, b, c, d):
return a * np.exp(b*(x + c)) + d return a * np.exp(b*(x + c)) + d
@ -405,8 +403,8 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ... if 'ply' in args: # formula: a + bx^1 + cx^2 + dx^3 + ...
inputs = [inputs] inputs = np.array([inputs])
outputs = [outputs] outputs = np.array([outputs])
plys = [] plys = []
limit = len(outputs[0]) limit = len(outputs[0])
@ -430,9 +428,6 @@ def regression(inputs, outputs, args): # inputs, outputs expects N-D array
try: try:
X = np.array(inputs)
y = np.array(outputs)
def func(x, a, b, c, d): def func(x, a, b, c, d):
return a * np.tanh(b*(x + c)) + d return a * np.tanh(b*(x + c)) + d

View File

@ -5,10 +5,13 @@
# this module is cuda-optimized and vectorized (except for one small part) # this module is cuda-optimized and vectorized (except for one small part)
# setup: # setup:
__version__ = "1.0.0.003" __version__ = "1.0.0.004"
# changelog should be viewed using print(analysis.regression.__changelog__) # changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """ __changelog__ = """
1.0.0.004:
- bug fixes
- fixed changelog
1.0.0.003: 1.0.0.003:
- bug fixes - bug fixes
1.0.0.002: 1.0.0.002:
@ -40,6 +43,8 @@ __all__ = [
'CustomTrain' 'CustomTrain'
] ]
import torch
global device global device
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu" device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -2,7 +2,7 @@ import setuptools
setuptools.setup( setuptools.setup(
name="analysis", # Replace with your own username name="analysis", # Replace with your own username
version="1.0.0.007", version="1.0.0.008",
author="The Titan Scouting Team", author="The Titan Scouting Team",
author_email="titanscout2022@gmail.com", author_email="titanscout2022@gmail.com",
description="analysis package developed by Titan Scouting for The Red Alliance", description="analysis package developed by Titan Scouting for The Red Alliance",
@ -10,6 +10,14 @@ setuptools.setup(
long_description_content_type="text/markdown", long_description_content_type="text/markdown",
url="https://github.com/titanscout2022/tr2022-strategy", url="https://github.com/titanscout2022/tr2022-strategy",
packages=setuptools.find_packages(), packages=setuptools.find_packages(),
install_requires=[
"numba",
"numpy",
"scipy",
"scikit-learn",
"six",
"matplotlib"
],
license = "GNU General Public License v3.0", license = "GNU General Public License v3.0",
classifiers=[ classifiers=[
"Programming Language :: Python :: 3", "Programming Language :: Python :: 3",