mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-27 01:59:08 +00:00
analysis.py v 1.1.11.007
This commit is contained in:
parent
96bf376b70
commit
031e45ac19
2
.gitignore
vendored
2
.gitignore
vendored
@ -12,3 +12,5 @@ data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.cp37-win_amd64.
|
|||||||
data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.obj
|
data analysis/analysis/build/temp.win-amd64-3.7/Release/analysis.obj
|
||||||
data analysis/test.ipynb
|
data analysis/test.ipynb
|
||||||
data analysis/.ipynb_checkpoints/test-checkpoint.ipynb
|
data analysis/.ipynb_checkpoints/test-checkpoint.ipynb
|
||||||
|
.vscode/settings.json
|
||||||
|
.vscode
|
||||||
|
@ -7,10 +7,12 @@
|
|||||||
# current benchmark of optimization: 1.33 times faster
|
# current benchmark of optimization: 1.33 times faster
|
||||||
# setup:
|
# setup:
|
||||||
|
|
||||||
__version__ = "1.1.11.006"
|
__version__ = "1.1.11.007"
|
||||||
|
|
||||||
# changelog should be viewed using print(analysis.__changelog__)
|
# changelog should be viewed using print(analysis.__changelog__)
|
||||||
__changelog__ = """changelog:
|
__changelog__ = """changelog:
|
||||||
|
1.1.11.007:
|
||||||
|
- bug fixes
|
||||||
1.1.11.006:
|
1.1.11.006:
|
||||||
- tested min and max
|
- tested min and max
|
||||||
- bug fixes
|
- bug fixes
|
||||||
@ -389,9 +391,9 @@ def trueskill(teams_data, observations):#teams_data is array of array of tuples
|
|||||||
|
|
||||||
class RegressionMetrics():
|
class RegressionMetrics():
|
||||||
|
|
||||||
def __new__(self, predictions, targets):
|
def __new__(cls, predictions, targets):
|
||||||
|
|
||||||
return self.r_squared(self, predictions, targets), self.mse(self, predictions, targets), self.rms(self, predictions, targets)
|
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
|
||||||
|
|
||||||
def r_squared(self, predictions, targets): # assumes equal size inputs
|
def r_squared(self, predictions, targets): # assumes equal size inputs
|
||||||
|
|
||||||
@ -407,9 +409,9 @@ class RegressionMetrics():
|
|||||||
|
|
||||||
class ClassificationMetrics():
|
class ClassificationMetrics():
|
||||||
|
|
||||||
def __new__(self, predictions, targets):
|
def __new__(cls, predictions, targets):
|
||||||
|
|
||||||
return self.cm(self, predictions, targets), self.cr(self, predictions, targets)
|
return cls.cm(cls, predictions, targets), cls.cr(cls, predictions, targets)
|
||||||
|
|
||||||
def cm(self, predictions, targets):
|
def cm(self, predictions, targets):
|
||||||
|
|
||||||
@ -538,13 +540,13 @@ class SVM:
|
|||||||
|
|
||||||
class CustomKernel:
|
class CustomKernel:
|
||||||
|
|
||||||
def __new__(self, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
def __new__(cls, C, kernel, degre, gamma, coef0, shrinking, probability, tol, cache_size, class_weight, verbose, max_iter, decision_function_shape, random_state):
|
||||||
|
|
||||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||||
|
|
||||||
class StandardKernel:
|
class StandardKernel:
|
||||||
|
|
||||||
def __new__(self, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
def __new__(cls, kernel, C=1.0, degree=3, gamma='auto_deprecated', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', random_state=None):
|
||||||
|
|
||||||
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
return sklearn.svm.SVC(C = C, kernel = kernel, gamma = gamma, coef0 = coef0, shrinking = shrinking, probability = probability, tol = tol, cache_size = cache_size, class_weight = class_weight, verbose = verbose, max_iter = max_iter, decision_function_shape = decision_function_shape, random_state = random_state)
|
||||||
|
|
||||||
@ -552,25 +554,25 @@ class SVM:
|
|||||||
|
|
||||||
class Linear:
|
class Linear:
|
||||||
|
|
||||||
def __new__(self):
|
def __new__(cls):
|
||||||
|
|
||||||
return sklearn.svm.SVC(kernel = 'linear')
|
return sklearn.svm.SVC(kernel = 'linear')
|
||||||
|
|
||||||
class Polynomial:
|
class Polynomial:
|
||||||
|
|
||||||
def __new__(self, power, r_bias):
|
def __new__(cls, power, r_bias):
|
||||||
|
|
||||||
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
return sklearn.svm.SVC(kernel = 'polynomial', degree = power, coef0 = r_bias)
|
||||||
|
|
||||||
class RBF:
|
class RBF:
|
||||||
|
|
||||||
def __new__(self, gamma):
|
def __new__(cls, gamma):
|
||||||
|
|
||||||
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
return sklearn.svm.SVC(kernel = 'rbf', gamma = gamma)
|
||||||
|
|
||||||
class Sigmoid:
|
class Sigmoid:
|
||||||
|
|
||||||
def __new__(self, r_bias):
|
def __new__(cls, r_bias):
|
||||||
|
|
||||||
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
return sklearn.svm.SVC(kernel = 'sigmoid', coef0 = r_bias)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user