tra-analysis/data analysis/analysis/analysis.py

681 lines
23 KiB
Python
Raw Normal View History

2019-04-09 14:30:37 +00:00
# Titan Robotics Team 2022: Data Analysis Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this should be imported as a python module using 'import analysis'
# this should be included in the local directory or environment variable
2019-09-30 21:02:32 +00:00
# this module has been optimized for multhreaded computing
2019-09-13 20:09:33 +00:00
# current benchmark of optimization: 1.33 times faster
2019-04-09 14:30:37 +00:00
# setup:
2019-10-04 15:34:31 +00:00
__version__ = "1.1.3.002"
2019-04-09 14:30:37 +00:00
# changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
2019-10-04 15:34:31 +00:00
1.1.3.002:
- renamed regression class to Regression, regression_engine() to regression gliko2_engine class to Gliko2
2019-10-04 13:13:28 +00:00
1.1.3.001:
- changed glicko2() to return tuple instead of array
2019-10-04 05:26:21 +00:00
1.1.3.000:
- added glicko2_engine class and glicko()
- verified glicko2() accuracy
2019-10-03 15:48:56 +00:00
1.1.2.003:
- fixed elo()
1.1.2.002:
2019-10-03 15:42:05 +00:00
- added elo()
- elo() has bugs to be fixed
2019-10-01 13:59:04 +00:00
1.1.2.001:
- readded regrression import
2019-09-30 21:02:32 +00:00
1.1.2.000:
- integrated regression.py as regression class
- removed regression import
- fixed metadata for regression class
- fixed metadata for analysis class
2019-09-30 18:37:19 +00:00
1.1.1.001:
- regression_engine() bug fixes, now actaully regresses
2019-09-30 15:11:53 +00:00
1.1.1.000:
- added regression_engine()
- added all regressions except polynomial
2019-09-25 19:11:20 +00:00
1.1.0.007:
- updated _init_device()
2019-09-17 17:21:44 +00:00
1.1.0.006:
- removed useless try statements
2019-09-17 13:46:47 +00:00
1.1.0.005:
- removed impossible outcomes
2019-09-16 16:11:27 +00:00
1.1.0.004:
- added performance metrics (r^2, mse, rms)
2019-09-13 19:38:24 +00:00
1.1.0.003:
- resolved nopython mode for mean, median, stdev, variance
2019-09-13 18:59:13 +00:00
1.1.0.002:
- snapped (removed) majority of uneeded imports
- forced object mode (bad) on all jit
- TODO: stop numba complaining about not being able to compile in nopython mode
2019-09-13 17:33:02 +00:00
1.1.0.001:
- removed from sklearn import * to resolve uneeded wildcard imports
2019-09-13 16:14:13 +00:00
1.1.0.000:
- removed c_entities,nc_entities,obstacles,objectives from __all__
- applied numba.jit to all functions
- depreciated and removed stdev_z_split
- cleaned up histo_analysis to include numpy and numba.jit optimizations
- depreciated and removed all regression functions in favor of future pytorch optimizer
- depreciated and removed all nonessential functions (basic_analysis, benchmark, strip_data)
- optimized z_normalize using sklearn.preprocessing.normalize
- TODO: implement kernel/function based pytorch regression optimizer
2019-04-09 14:30:37 +00:00
1.0.9.000:
- refactored
- numpyed everything
- removed stats in favor of numpy functions
2019-04-09 14:30:37 +00:00
1.0.8.005:
- minor fixes
1.0.8.004:
- removed a few unused dependencies
1.0.8.003:
- added p_value function
1.0.8.002:
- updated __all__ correctly to contain changes made in v 1.0.8.000 and v 1.0.8.001
1.0.8.001:
- refactors
- bugfixes
1.0.8.000:
- depreciated histo_analysis_old
- depreciated debug
- altered basic_analysis to take array data instead of filepath
- refactor
- optimization
1.0.7.002:
- bug fixes
1.0.7.001:
- bug fixes
1.0.7.000:
- added tanh_regression (logistical regression)
- bug fixes
1.0.6.005:
- added z_normalize function to normalize dataset
- bug fixes
1.0.6.004:
- bug fixes
1.0.6.003:
- bug fixes
1.0.6.002:
- bug fixes
1.0.6.001:
- corrected __all__ to contain all of the functions
1.0.6.000:
- added calc_overfit, which calculates two measures of overfit, error and performance
- added calculating overfit to optimize_regression
1.0.5.000:
- added optimize_regression function, which is a sample function to find the optimal regressions
- optimize_regression function filters out some overfit funtions (functions with r^2 = 1)
- planned addition: overfit detection in the optimize_regression function
1.0.4.002:
- added __changelog__
- updated debug function with log and exponential regressions
1.0.4.001:
- added log regressions
- added exponential regressions
- added log_regression and exp_regression to __all__
1.0.3.008:
- added debug function to further consolidate functions
1.0.3.007:
- added builtin benchmark function
- added builtin random (linear) data generation function
- added device initialization (_init_device)
1.0.3.006:
- reorganized the imports list to be in alphabetical order
- added search and regurgitate functions to c_entities, nc_entities, obstacles, objectives
1.0.3.005:
- major bug fixes
- updated historical analysis
- depreciated old historical analysis
1.0.3.004:
- added __version__, __author__, __all__
- added polynomial regression
- added root mean squared function
- added r squared function
1.0.3.003:
- bug fixes
- added c_entities
1.0.3.002:
- bug fixes
- added nc_entities, obstacles, objectives
- consolidated statistics.py to analysis.py
1.0.3.001:
- compiled 1d, column, and row basic stats into basic stats function
1.0.3.000:
- added historical analysis function
1.0.2.xxx:
- added z score test
1.0.1.xxx:
- major bug fixes
1.0.0.xxx:
- added loading csv
- added 1d, column, row basic stats
"""
__author__ = (
2019-09-30 21:02:32 +00:00
"Arthur Lu <learthurgo@gmail.com>",
"Jacob Levine <jlevine@imsa.edu>",
2019-04-09 14:30:37 +00:00
)
__all__ = [
'_init_device',
'load_csv',
'basic_stats',
'z_score',
'z_normalize',
'histo_analysis',
2019-10-04 15:34:31 +00:00
'regression',
'elo',
'gliko2',
2019-09-16 16:11:27 +00:00
'r_squared',
'mse',
'rms',
2019-10-04 15:34:31 +00:00
'Regression',
'Gliko2'
2019-04-09 14:30:37 +00:00
# all statistics functions left out due to integration in other functions
]
# now back to your regularly scheduled programming:
# imports (now in alphabetical order! v 1.0.3.006):
import csv
2019-09-13 16:14:13 +00:00
import numba
from numba import jit
2019-04-09 14:30:37 +00:00
import numpy as np
2019-09-16 16:11:27 +00:00
import math
2019-10-01 13:59:04 +00:00
try:
from analysis import regression
except:
pass
2019-09-16 16:11:27 +00:00
from sklearn import metrics
2019-09-13 16:14:13 +00:00
from sklearn import preprocessing
2019-09-22 02:10:22 +00:00
import torch
2019-04-09 14:30:37 +00:00
class error(ValueError):
pass
2019-09-25 19:11:20 +00:00
def _init_device(): # initiates computation device for ANNs
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
return device
2019-04-09 14:30:37 +00:00
2019-09-13 18:59:13 +00:00
@jit(forceobj=True)
2019-04-09 14:30:37 +00:00
def load_csv(filepath):
with open(filepath, newline='') as csvfile:
file_array = np.array(list(csv.reader(csvfile)))
2019-04-09 14:30:37 +00:00
csvfile.close()
return file_array
2019-09-13 19:29:22 +00:00
# expects 1d array
2019-09-13 18:59:13 +00:00
@jit(forceobj=True)
2019-09-13 16:14:13 +00:00
def basic_stats(data):
2019-04-09 14:30:37 +00:00
2019-09-13 16:14:13 +00:00
data_t = np.array(data).astype(float)
2019-04-09 14:30:37 +00:00
2019-09-13 16:14:13 +00:00
_mean = mean(data_t)
_median = median(data_t)
_stdev = stdev(data_t)
_variance = variance(data_t)
2019-04-09 14:30:37 +00:00
2019-09-13 16:14:13 +00:00
return _mean, _median, _stdev, _variance
2019-04-09 14:30:37 +00:00
# returns z score with inputs of point, mean and standard deviation of spread
2019-09-13 18:59:13 +00:00
@jit(forceobj=True)
2019-04-09 14:30:37 +00:00
def z_score(point, mean, stdev):
score = (point - mean) / stdev
2019-09-30 21:09:31 +00:00
2019-04-09 14:30:37 +00:00
return score
2019-09-13 16:14:13 +00:00
# expects 2d array, normalizes across all axes
2019-09-13 18:59:13 +00:00
@jit(forceobj=True)
2019-09-13 16:14:13 +00:00
def z_normalize(array, *args):
2019-04-09 14:30:37 +00:00
2019-09-13 16:14:13 +00:00
array = np.array(array)
for arg in args:
array = preprocessing.normalize(array, axis = arg)
2019-04-09 14:30:37 +00:00
2019-09-13 16:14:13 +00:00
return array
2019-04-09 14:30:37 +00:00
2019-09-13 18:59:13 +00:00
@jit(forceobj=True)
2019-09-13 16:14:13 +00:00
# expects 2d array of [x,y]
def histo_analysis(hist_data):
2019-04-09 14:30:37 +00:00
2019-09-13 16:14:13 +00:00
hist_data = np.array(hist_data)
derivative = np.array(len(hist_data) - 1, dtype = float)
t = np.diff(hist_data)
derivative = t[1] / t[0]
np.sort(derivative)
2019-04-09 14:30:37 +00:00
2019-09-16 16:11:27 +00:00
return basic_stats(derivative)[0], basic_stats(derivative)[3]
2019-09-30 15:11:53 +00:00
@jit(forceobj=True)
2019-10-04 15:34:31 +00:00
def regression(device, inputs, outputs, args, loss = torch.nn.MSELoss(), _iterations = 10000, lr = 0.01):
2019-09-30 15:11:53 +00:00
regressions = []
if 'cuda' in device:
2019-10-04 15:34:31 +00:00
Regression.set_device(device)
2019-09-30 15:11:53 +00:00
if 'linear' in args:
2019-10-04 15:34:31 +00:00
model = Regression.SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor([outputs]).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
2019-09-30 18:37:19 +00:00
regressions.append([model[0].parameters, model[1][::-1][0]])
2019-09-30 15:11:53 +00:00
if 'log' in args:
2019-10-04 15:34:31 +00:00
model = Regression.SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
2019-09-30 18:37:19 +00:00
regressions.append([model[0].parameters, model[1][::-1][0]])
2019-09-30 15:11:53 +00:00
if 'exp' in args:
2019-10-04 15:34:31 +00:00
model = Regression.SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
2019-09-30 18:37:19 +00:00
regressions.append([model[0].parameters, model[1][::-1][0]])
2019-09-30 15:11:53 +00:00
#if 'poly' in args:
#TODO because Jacob hasnt fixed regression.py
if 'sig' in args:
2019-10-04 15:34:31 +00:00
model = Regression.SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float).cuda(), torch.tensor(outputs).to(torch.float).cuda(), iterations=_iterations, learning_rate=lr, return_losses=True)
2019-09-30 18:37:19 +00:00
regressions.append([model[0].parameters, model[1][::-1][0]])
2019-09-30 15:11:53 +00:00
else:
2019-10-04 15:34:31 +00:00
Regression.set_device(device)
2019-09-30 15:11:53 +00:00
if 'linear' in args:
2019-10-04 15:34:31 +00:00
model = Regression.SGDTrain(Regression.LinearRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
2019-09-30 18:37:19 +00:00
regressions.append([model[0].parameters, model[1][::-1][0]])
2019-09-30 15:11:53 +00:00
if 'log' in args:
2019-10-04 15:34:31 +00:00
model = Regression.SGDTrain(Regression.LogRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
2019-09-30 18:37:19 +00:00
regressions.append([model[0].parameters, model[1][::-1][0]])
2019-09-30 15:11:53 +00:00
if 'exp' in args:
2019-10-04 15:34:31 +00:00
model = Regression.SGDTrain(Regression.ExpRegKernel(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
2019-09-30 18:37:19 +00:00
regressions.append([model[0].parameters, model[1][::-1][0]])
2019-09-30 15:11:53 +00:00
#if 'poly' in args:
#TODO because Jacob hasnt fixed regression.py
if 'sig' in args:
2019-10-04 15:34:31 +00:00
model = Regression.SGDTrain(Regression.SigmoidalRegKernelArthur(len(inputs)), torch.tensor(inputs).to(torch.float), torch.tensor(outputs).to(torch.float), iterations=_iterations, learning_rate=lr, return_losses=True)
2019-09-30 18:37:19 +00:00
regressions.append([model[0].parameters, model[1][::-1][0]])
return regressions
2019-09-16 16:11:27 +00:00
2019-10-03 15:42:05 +00:00
@jit(nopython=True)
def elo(starting_score, opposing_scores, observed, N, K):
2019-10-03 01:56:06 +00:00
2019-10-03 15:42:05 +00:00
expected = 1/(1+10**((np.array(opposing_scores) - starting_score)/N))
2019-10-03 15:48:56 +00:00
return starting_score + K*(np.sum(observed) - np.sum(expected))
2019-10-03 01:56:06 +00:00
2019-10-04 14:28:25 +00:00
@jit(forceobj=True)
2019-10-04 14:12:12 +00:00
def gliko2(starting_score, starting_rd, starting_vol, opposing_scores, opposing_rd, observations):
2019-10-04 05:26:21 +00:00
2019-10-04 15:34:31 +00:00
player = Gliko2(rating = starting_score, rd = starting_rd, vol = starting_vol)
2019-10-04 05:26:21 +00:00
2019-10-04 14:12:12 +00:00
player.update_player([x for x in opposing_scores], [x for x in opposing_rd], observations)
2019-10-04 05:26:21 +00:00
2019-10-04 13:13:28 +00:00
return (player.rating, player.rd, player.vol)
2019-10-04 05:26:21 +00:00
2019-09-16 16:11:27 +00:00
@jit(forceobj=True)
def r_squared(predictions, targets): # assumes equal size inputs
return metrics.r2_score(np.array(targets), np.array(predictions))
@jit(forceobj=True)
def mse(predictions, targets):
return metrics.mean_squared_error(np.array(targets), np.array(predictions))
@jit(forceobj=True)
def rms(predictions, targets):
return math.sqrt(metrics.mean_squared_error(np.array(targets), np.array(predictions)))
2019-04-09 14:30:37 +00:00
2019-09-13 19:38:24 +00:00
@jit(nopython=True)
def mean(data):
return np.mean(data)
2019-09-13 19:38:24 +00:00
@jit(nopython=True)
def median(data):
return np.median(data)
2019-09-13 19:38:24 +00:00
@jit(nopython=True)
def stdev(data):
return np.std(data)
2019-09-13 19:38:24 +00:00
@jit(nopython=True)
def variance(data):
2019-09-30 21:02:32 +00:00
return np.var(data)
2019-10-04 15:34:31 +00:00
class Regression:
2019-09-30 21:02:32 +00:00
# Titan Robotics Team 2022: CUDA-based Regressions Module
# Written by Arthur Lu & Jacob Levine
# Notes:
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
# this module is cuda-optimized and vectorized (except for one small part)
# setup:
__version__ = "1.0.0.002"
# changelog should be viewed using print(analysis.regression.__changelog__)
__changelog__ = """
1.0.0.002:
-Added more parameters to log, exponential, polynomial
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
to train the scaling and shifting of sigmoids
1.0.0.001:
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
-already vectorized (except for polynomial generation) and CUDA-optimized
"""
__author__ = (
"Jacob Levine <jlevine@imsa.edu>",
"Arthur Lu <learthurgo@gmail.com>"
)
__all__ = [
'factorial',
'take_all_pwrs',
'num_poly_terms',
'set_device',
'LinearRegKernel',
'SigmoidalRegKernel',
'LogRegKernel',
'PolyRegKernel',
'ExpRegKernel',
'SigmoidalRegKernelArthur',
'SGDTrain',
'CustomTrain'
]
# imports (just one for now):
import torch
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
#todo: document completely
def factorial(n):
if n==0:
return 1
else:
return n*factorial(n-1)
def num_poly_terms(num_vars, power):
if power == 0:
return 0
return int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1)) + num_poly_terms(num_vars, power-1)
def take_all_pwrs(vec,pwr):
#todo: vectorize (kinda)
combins=torch.combinations(vec, r=pwr, with_replacement=True)
out=torch.ones(combins.size()[0])
for i in torch.t(combins):
out *= i
return torch.cat(out,take_all_pwrs(vec, pwr-1))
def set_device(new_device):
global device
device=new_device
class LinearRegKernel():
parameters= []
weights=None
bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,mtx)+long_bias
class SigmoidalRegKernel():
parameters= []
weights=None
bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
long_bias=self.bias.repeat([1,mtx.size()[1]])
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
class SigmoidalRegKernelArthur():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
sigmoid=torch.nn.Sigmoid()
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class LogRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class ExpRegKernel():
parameters= []
weights=None
in_bias=None
scal_mult=None
out_bias=None
def __init__(self, num_vars):
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
self.in_bias=torch.rand(1, requires_grad=True, device=device)
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
self.out_bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
def forward(self,mtx):
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
class PolyRegKernel():
parameters= []
weights=None
bias=None
power=None
def __init__(self, num_vars, power):
self.power=power
num_terms=num_poly_terms(num_vars, power)
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
self.bias=torch.rand(1, requires_grad=True, device=device)
self.parameters=[self.weights,self.bias]
def forward(self,mtx):
#TODO: Vectorize the last part
cols=[]
for i in torch.t(mtx):
cols.append(take_all_pwrs(i,self.power))
new_mtx=torch.t(torch.stack(cols))
long_bias=self.bias.repeat([1,mtx.size()[1]])
return torch.matmul(self.weights,new_mtx)+long_bias
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
return kernel
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
data_cuda=data.to(device)
ground_cuda=ground.to(device)
if (return_losses):
losses=[]
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data)
ls=loss(pred,ground)
losses.append(ls.item())
ls.backward()
optim.step()
return [kernel,losses]
else:
for i in range(iterations):
with torch.set_grad_enabled(True):
optim.zero_grad()
pred=kernel.forward(data_cuda)
ls=loss(pred,ground_cuda)
ls.backward()
optim.step()
2019-10-04 05:26:21 +00:00
return kernel
2019-10-04 15:34:31 +00:00
class Gliko2:
2019-10-04 05:26:21 +00:00
_tau = 0.5
def getRating(self):
return (self.__rating * 173.7178) + 1500
def setRating(self, rating):
self.__rating = (rating - 1500) / 173.7178
rating = property(getRating, setRating)
def getRd(self):
return self.__rd * 173.7178
def setRd(self, rd):
self.__rd = rd / 173.7178
rd = property(getRd, setRd)
def __init__(self, rating = 1500, rd = 350, vol = 0.06):
self.setRating(rating)
self.setRd(rd)
self.vol = vol
def _preRatingRD(self):
self.__rd = math.sqrt(math.pow(self.__rd, 2) + math.pow(self.vol, 2))
def update_player(self, rating_list, RD_list, outcome_list):
rating_list = [(x - 1500) / 173.7178 for x in rating_list]
RD_list = [x / 173.7178 for x in RD_list]
v = self._v(rating_list, RD_list)
self.vol = self._newVol(rating_list, RD_list, outcome_list, v)
self._preRatingRD()
self.__rd = 1 / math.sqrt((1 / math.pow(self.__rd, 2)) + (1 / v))
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * \
(outcome_list[i] - self._E(rating_list[i], RD_list[i]))
self.__rating += math.pow(self.__rd, 2) * tempSum
def _newVol(self, rating_list, RD_list, outcome_list, v):
i = 0
delta = self._delta(rating_list, RD_list, outcome_list, v)
a = math.log(math.pow(self.vol, 2))
tau = self._tau
x0 = a
x1 = 0
while x0 != x1:
# New iteration, so x(i) becomes x(i-1)
x0 = x1
d = math.pow(self.__rating, 2) + v + math.exp(x0)
h1 = -(x0 - a) / math.pow(tau, 2) - 0.5 * math.exp(x0) \
/ d + 0.5 * math.exp(x0) * math.pow(delta / d, 2)
h2 = -1 / math.pow(tau, 2) - 0.5 * math.exp(x0) * \
(math.pow(self.__rating, 2) + v) \
/ math.pow(d, 2) + 0.5 * math.pow(delta, 2) * math.exp(x0) \
* (math.pow(self.__rating, 2) + v - math.exp(x0)) / math.pow(d, 3)
x1 = x0 - (h1 / h2)
return math.exp(x1 / 2)
def _delta(self, rating_list, RD_list, outcome_list, v):
tempSum = 0
for i in range(len(rating_list)):
tempSum += self._g(RD_list[i]) * (outcome_list[i] - self._E(rating_list[i], RD_list[i]))
return v * tempSum
def _v(self, rating_list, RD_list):
tempSum = 0
for i in range(len(rating_list)):
tempE = self._E(rating_list[i], RD_list[i])
tempSum += math.pow(self._g(RD_list[i]), 2) * tempE * (1 - tempE)
return 1 / tempSum
def _E(self, p2rating, p2RD):
return 1 / (1 + math.exp(-1 * self._g(p2RD) * \
(self.__rating - p2rating)))
def _g(self, RD):
return 1 / math.sqrt(1 + 3 * math.pow(RD, 2) / math.pow(math.pi, 2))
def did_not_compete(self):
self._preRatingRD()