1
0
mirror of https://github.com/titanscouting/tra-analysis.git synced 2025-01-18 19:05:56 +00:00
tra-analysis/dep/2019/superscripts/titanlearn.py

207 lines
8.1 KiB
Python
Raw Normal View History

2020-03-10 03:58:51 +00:00
#Titan Robotics Team 2022: ML Module
#Written by Arthur Lu & Jacob Levine
#Notes:
# this should be imported as a python module using 'import titanlearn'
# this should be included in the local directory or environment variable
# this module has not been optimized for multhreaded computing
# this module learns from its mistakes far faster than 2022's captains
#setup:
__version__ = "1.0.0.001"
#changelog should be viewed using print(analysis.__changelog__)
__changelog__ = """changelog:
1.0.0.xxx:
-added generation of ANNS, basic SGD training"""
__author__ = (
"Arthur Lu <arthurlu@ttic.edu>, "
"Jacob Levine <jlevine@ttic.edu>,"
)
__all__ = [
'linear_nn',
'train_sgd_minibatch',
'train_sgd_simple'
]
#imports
import torch
import warnings
from collections import OrderedDict
from sklearn import metrics, datasets
import numpy as np
import matplotlib.pyplot as plt
import math
import time
#enable CUDA if possible
device = torch.device("cpu")
#linear_nn: creates a fully connected network given params
def linear_nn(in_dim, hidden_dim, out_dim, num_hidden, act_fn="tanh", end="none"):
if act_fn.lower()=="tanh":
k=OrderedDict([("in", torch.nn.Linear(in_dim,hidden_dim))])
for i in range(num_hidden):
k.update({"lin"+str(i+1): torch.nn.Linear(hidden_dim,hidden_dim), "tanh"+str(i+1):torch.nn.Tanh()})
elif act_fn.lower()=="sigmoid":
k=OrderedDict([("in", torch.nn.Linear(in_dim,hidden_dim))])
for i in range(num_hidden):
k.update({"lin"+str(i+1): torch.nn.Linear(hidden_dim,hidden_dim), "sig"+str(i+1):torch.nn.Sigmoid()})
elif act_fn.lower()=="relu":
k=OrderedDict([("in", torch.nn.Linear(in_dim,hidden_dim))])
for i in range(num_hidden):
k.update({"lin"+str(i+1): torch.nn.Linear(hidden_dim,hidden_dim), "relu"+str(i+1):torch.nn.ReLU()})
elif act_fn.lower()=="leaky relu":
k=OrderedDict([("in", torch.nn.Linear(in_dim,hidden_dim))])
for i in range(num_hidden):
k.update({"lin"+str(i+1): torch.nn.Linear(hidden_dim,hidden_dim), "lre"+str(i+1):torch.nn.LeakyReLU()})
else:
warnings.warn("Did not specify a valid inner activation function. Returning nothing.")
return None
if end.lower()=="softmax":
k.update({"out": torch.nn.Linear(hidden_dim,out_dim), "softmax": torch.nn.Softmax()})
elif end.lower()=="none":
k.update({"out": torch.nn.Linear(hidden_dim,out_dim)})
elif end.lower()=="sigmoid":
k.update({"out": torch.nn.Linear(hidden_dim,out_dim), "sigmoid": torch.nn.Sigmoid()})
else:
warnings.warn("Did not specify a valid final activation function. Returning nothing.")
return None
return torch.nn.Sequential(k)
#train_sgd_simple: trains network using SGD
def train_sgd_simple(net, evalType, data, ground, dev=None, devg=None, iters=1000, learnrate=1e-4, testevery=1, graphsaveloc=None, modelsaveloc=None, loss="mse"):
model=net.to(device)
data=data.to(device)
ground=ground.to(device)
if dev != None:
dev=dev.to(device)
losses=[]
dev_losses=[]
if loss.lower()=="mse":
loss_fn = torch.nn.MSELoss()
elif loss.lower()=="cross entropy":
loss_fn = torch.nn.CrossEntropyLoss()
elif loss.lower()=="nll":
loss_fn = torch.nn.NLLLoss()
elif loss.lower()=="poisson nll":
loss_fn = torch.nn.PoissonNLLLoss()
else:
warnings.warn("Did not specify a valid loss function. Returning nothing.")
return None
optimizer=torch.optim.SGD(model.parameters(), lr=learnrate)
for i in range(iters):
if i%testevery==0:
with torch.no_grad():
output = model(data)
if evalType == "ap":
ap = metrics.average_precision_score(ground.cpu().numpy(), output.cpu().numpy())
if evalType == "regression":
ap = metrics.explained_variance_score(ground.cpu().numpy(), output.cpu().numpy())
losses.append(ap)
print(str(i)+": "+str(ap))
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses), label="train AP")
if dev != None:
output = model(dev)
print(evalType)
if evalType == "ap":
ap = metrics.average_precision_score(devg.numpy(), output.numpy())
dev_losses.append(ap)
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses), label="dev AP")
elif evalType == "regression":
ev = metrics.explained_variance_score(devg.numpy(), output.numpy())
dev_losses.append(ev)
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses), label="dev EV")
if graphsaveloc != None:
plt.savefig(graphsaveloc+".pdf")
with torch.enable_grad():
optimizer.zero_grad()
output = model(data)
loss = loss_fn(output, ground)
print(loss.item())
loss.backward()
optimizer.step()
if modelsaveloc != None:
torch.save(model, modelsaveloc)
plt.show()
return model
#train_sgd_minibatch: same as above, but with minibatches
def train_sgd_minibatch(net, data, ground, dev=None, devg=None, epoch=100, batchsize=20, learnrate=1e-4, testevery=20, graphsaveloc=None, modelsaveloc=None, loss="mse"):
model=net.to(device)
data=data.to(device)
ground=ground.to(device)
if dev != None:
dev=dev.to(device)
losses=[]
dev_losses=[]
if loss.lower()=="mse":
loss_fn = torch.nn.MSELoss()
elif loss.lower()=="cross entropy":
loss_fn = torch.nn.CrossEntropyLoss()
elif loss.lower()=="nll":
loss_fn = torch.nn.NLLLoss()
elif loss.lower()=="poisson nll":
loss_fn = torch.nn.PoissonNLLLoss()
else:
warnings.warn("Did not specify a valid loss function. Returning nothing.")
return None
optimizer=torch.optim.LBFGS(model.parameters(), lr=learnrate)
itercount=0
for i in range(epoch):
print("EPOCH "+str(i)+" OF "+str(epoch-1))
batches=math.ceil(data.size()[0].item()/batchsize)
for j in range(batches):
batchdata=[]
batchground=[]
for k in range(j*batchsize, min((j+1)*batchsize, data.size()[0].item()),1):
batchdata.append(data[k])
batchground.append(ground[k])
batchdata=torch.stack(batchdata)
batchground=torch.stack(batchground)
if itercount%testevery==0:
with torch.no_grad():
output = model(data)
ap = metrics.average_precision_score(ground.numpy(), output.numpy())
losses.append(ap)
print(str(i)+": "+str(ap))
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses))
if dev != None:
output = model(dev)
ap = metrics.average_precision_score(devg.numpy(), output.numpy())
dev_losses.append(ap)
plt.plot(np.array(range(0,i+1,testevery)),np.array(losses), label="dev AP")
if graphsaveloc != None:
plt.savefig(graphsaveloc+".pdf")
with torch.enable_grad():
optimizer.zero_grad()
output = model(batchdata)
loss = loss_fn(output, ground)
loss.backward()
optimizer.step()
itercount +=1
if modelsaveloc != None:
torch.save(model, modelsaveloc)
plt.show()
return model
def retyuoipufdyu():
data = torch.tensor(datasets.fetch_california_housing()['data']).to(torch.float)
ground = datasets.fetch_california_housing()['target']
ground = torch.tensor(ground).to(torch.float)
model = linear_nn(8, 100, 1, 20, act_fn = "relu")
print(model)
return train_sgd_simple(model,"regression", data, ground, learnrate=1e-4, iters=1000)
start = time.time()
retyuoipufdyu()
end = time.time()
print(end-start)