2019-09-23 14:58:08 +00:00
|
|
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
|
|
|
# Written by Arthur Lu & Jacob Levine
|
|
|
|
# Notes:
|
|
|
|
# this should be imported as a python module using 'import cudaregress'
|
|
|
|
# this should be included in the local directory or environment variable
|
|
|
|
# this module is cuda-optimized and vectorized (except for one small part)
|
|
|
|
# setup:
|
|
|
|
|
|
|
|
__version__ = "1.0.0.001"
|
|
|
|
|
|
|
|
# changelog should be viewed using print(cudaregress.__changelog__)
|
|
|
|
__changelog__ = """
|
|
|
|
1.0.0.001:
|
|
|
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
|
|
|
-already vectorized (except for polynomial generation) and CUDA-optimized
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
__author__ = (
|
|
|
|
"Jacob Levine <jlevine@imsa.edu>",
|
|
|
|
)
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'factorial',
|
|
|
|
'take_all_pwrs',
|
|
|
|
'set_device',
|
|
|
|
'LinearRegKernel',
|
|
|
|
'SigmoidalRegKernel',
|
|
|
|
'LogRegKernel',
|
|
|
|
'PolyRegKernel',
|
|
|
|
'ExpRegKernel',
|
|
|
|
'SGDTrain',
|
|
|
|
'CustomTrain'
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
# imports (just one for now):
|
|
|
|
|
|
|
|
import torch
|
|
|
|
|
|
|
|
#set device
|
|
|
|
device='cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
|
|
|
|
|
|
#todo: document completely
|
|
|
|
|
|
|
|
def factorial(n):
|
|
|
|
if n==0:
|
|
|
|
return 1
|
|
|
|
else:
|
|
|
|
return n*factorial(n-1)
|
|
|
|
|
|
|
|
def take_all_pwrs(vec,pwr):
|
|
|
|
#todo: vectorize (kinda)
|
|
|
|
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
|
|
|
out=torch.ones(combins.size()[0])
|
|
|
|
for i in torch.t(combins):
|
|
|
|
out *= i
|
|
|
|
return out
|
|
|
|
|
|
|
|
def set_device(new_device):
|
|
|
|
global device
|
|
|
|
device=new_device
|
|
|
|
|
|
|
|
class LinearRegKernel():
|
|
|
|
parameters= []
|
|
|
|
weights=None
|
|
|
|
bias=None
|
|
|
|
def __init__(self, num_vars):
|
|
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
|
|
self.parameters=[self.weights,self.bias]
|
|
|
|
def forward(self,mtx):
|
|
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
|
|
return torch.matmul(self.weights,mtx)+long_bias
|
|
|
|
|
|
|
|
class SigmoidalRegKernel():
|
|
|
|
parameters= []
|
|
|
|
weights=None
|
|
|
|
bias=None
|
|
|
|
sigmoid=torch.nn.Sigmoid()
|
|
|
|
def __init__(self, num_vars):
|
|
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
|
|
self.parameters=[self.weights,self.bias]
|
|
|
|
def forward(self,mtx):
|
|
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
|
|
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
|
|
|
|
|
|
|
class LogRegKernel():
|
|
|
|
parameters= []
|
|
|
|
weights=None
|
|
|
|
bias=None
|
|
|
|
def __init__(self, num_vars):
|
|
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
|
|
self.parameters=[self.weights,self.bias]
|
|
|
|
def forward(self,mtx):
|
|
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
|
|
return torch.log(torch.matmul(self.weights,mtx)+long_bias)
|
|
|
|
|
|
|
|
class ExpRegKernel():
|
|
|
|
parameters= []
|
|
|
|
weights=None
|
|
|
|
bias=None
|
|
|
|
def __init__(self, num_vars):
|
|
|
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
|
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
|
|
self.parameters=[self.weights,self.bias]
|
|
|
|
def forward(self,mtx):
|
|
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
|
|
return torch.exp(torch.matmul(self.weights,mtx)+long_bias)
|
|
|
|
|
|
|
|
class PolyRegKernel():
|
|
|
|
parameters= []
|
|
|
|
weights=None
|
|
|
|
bias=None
|
|
|
|
power=None
|
|
|
|
def __init__(self, num_vars, power):
|
|
|
|
self.power=power
|
|
|
|
num_terms=int(factorial(num_vars+power-1) / factorial(power) / factorial(num_vars-1))
|
|
|
|
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
|
|
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
|
|
|
self.parameters=[self.weights,self.bias]
|
|
|
|
def forward(self,mtx):
|
|
|
|
#TODO: Vectorize the last part
|
|
|
|
cols=[]
|
|
|
|
for i in torch.t(mtx):
|
|
|
|
cols.append(take_all_pwrs(i,self.power))
|
|
|
|
new_mtx=torch.t(torch.stack(cols))
|
|
|
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
|
|
|
return torch.matmul(self.weights,new_mtx)+long_bias
|
|
|
|
|
|
|
|
def SGDTrain(kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
|
|
|
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
|
|
|
data_cuda=data.to(device)
|
|
|
|
ground_cuda=ground.to(device)
|
|
|
|
if (return_losses):
|
|
|
|
losses=[]
|
|
|
|
for i in range(iterations):
|
|
|
|
with torch.set_grad_enabled(True):
|
|
|
|
optim.zero_grad()
|
|
|
|
pred=kernel.forward(data_cuda)
|
|
|
|
ls=loss(pred,ground_cuda)
|
|
|
|
losses.append(ls.item())
|
|
|
|
ls.backward()
|
|
|
|
optim.step()
|
|
|
|
return [kernel,losses]
|
|
|
|
else:
|
|
|
|
for i in range(iterations):
|
|
|
|
with torch.set_grad_enabled(True):
|
|
|
|
optim.zero_grad()
|
|
|
|
pred=kernel.forward(data_cuda)
|
|
|
|
ls=loss(pred,ground_cuda)
|
|
|
|
ls.backward()
|
|
|
|
optim.step()
|
|
|
|
return kernel
|
|
|
|
|
|
|
|
def CustomTrain(kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
|
|
|
data_cuda=data.to(device)
|
|
|
|
ground_cuda=ground.to(device)
|
|
|
|
if (return_losses):
|
|
|
|
losses=[]
|
|
|
|
for i in range(iterations):
|
|
|
|
with torch.set_grad_enabled(True):
|
|
|
|
optim.zero_grad()
|
|
|
|
pred=kernel.forward(data)
|
|
|
|
ls=loss(pred,ground)
|
|
|
|
losses.append(ls.item())
|
|
|
|
ls.backward()
|
|
|
|
optim.step()
|
|
|
|
return [kernel,losses]
|
|
|
|
else:
|
|
|
|
for i in range(iterations):
|
|
|
|
with torch.set_grad_enabled(True):
|
|
|
|
optim.zero_grad()
|
|
|
|
pred=kernel.forward(data_cuda)
|
|
|
|
ls=loss(pred,ground_cuda)
|
|
|
|
ls.backward()
|
|
|
|
optim.step()
|
|
|
|
return kernel
|