mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-01 03:31:21 +00:00
131 lines
4.0 KiB
Python
131 lines
4.0 KiB
Python
|
#Titan Robotics Team 2022: Visualization Module
|
||
|
#Written by Arthur Lu & Jacob Levine
|
||
|
#Notes:
|
||
|
# this should be imported as a python module using 'import visualization'
|
||
|
# this should be included in the local directory or environment variable
|
||
|
# this module has not been optimized for multhreaded computing
|
||
|
#Number of easter eggs: Jake is Jewish and does not observe easter.
|
||
|
#setup:
|
||
|
|
||
|
__version__ = "1.0.0.001"
|
||
|
|
||
|
#changelog should be viewed using print(analysis.__changelog__)
|
||
|
__changelog__ = """changelog:
|
||
|
1.0.0.xxx:
|
||
|
-added basic plotting, clustering, and regression comparisons"""
|
||
|
__author__ = (
|
||
|
"Arthur Lu <arthurlu@ttic.edu>, "
|
||
|
"Jacob Levine <jlevine@ttic.edu>,"
|
||
|
)
|
||
|
__all__ = [
|
||
|
'affinity_prop',
|
||
|
'bar_graph',
|
||
|
'dbscan',
|
||
|
'kmeans',
|
||
|
'line_plot',
|
||
|
'pca_comp',
|
||
|
'regression_comp',
|
||
|
'scatter_plot',
|
||
|
'spectral',
|
||
|
'vis_2d'
|
||
|
]
|
||
|
#imports
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from sklearn.decomposition import PCA, KernelPCA, IncrementalPCA
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
from sklearn.cluster import AffinityPropagation, DBSCAN, KMeans, SpectralClustering
|
||
|
|
||
|
#bar of x,y
|
||
|
def bar_graph(x,y):
|
||
|
x=np.asarray(x)
|
||
|
y=np.asarray(y)
|
||
|
plt.bar(x,y)
|
||
|
plt.show()
|
||
|
|
||
|
#scatter of x,y
|
||
|
def scatter_plot(x,y):
|
||
|
x=np.asarray(x)
|
||
|
y=np.asarray(y)
|
||
|
plt.scatter(x,y)
|
||
|
plt.show()
|
||
|
|
||
|
#line of x,y
|
||
|
def line_plot(x,y):
|
||
|
x=np.asarray(x)
|
||
|
y=np.asarray(y)
|
||
|
plt.scatter(x,y)
|
||
|
plt.show()
|
||
|
|
||
|
#plot data + regression fit
|
||
|
def regression_comp(x,y,reg):
|
||
|
x=np.asarray(x)
|
||
|
y=np.asarray(y)
|
||
|
regx=np.arange(x.min(),x.max(),(x.max()-x.min())/1000)
|
||
|
regy=[]
|
||
|
for i in regx:
|
||
|
regy.append(eval(reg[0].replace("z",str(i))))
|
||
|
regy=np.asarray(regy)
|
||
|
plt.scatter(x,y)
|
||
|
plt.plot(regx,regy,color="orange",linewidth=3)
|
||
|
plt.text(.85*max([x.max(),regx.max()]),.95*max([y.max(),regy.max()]),
|
||
|
u"R\u00b2="+str(round(reg[2],5)),
|
||
|
horizontalalignment='center', verticalalignment='center')
|
||
|
plt.text(.85*max([x.max(),regx.max()]),.85*max([y.max(),regy.max()]),
|
||
|
"MSE="+str(round(reg[1],5)),
|
||
|
horizontalalignment='center', verticalalignment='center')
|
||
|
plt.show()
|
||
|
|
||
|
#PCA to compress down to 2d
|
||
|
def pca_comp(big_multidim):
|
||
|
pca=PCA(n_components=2)
|
||
|
td_norm=StandardScaler().fit_transform(big_multidim)
|
||
|
td_pca=pca.fit_transform(td_norm)
|
||
|
return td_pca
|
||
|
|
||
|
#one-stop visualization of multidim datasets
|
||
|
def vis_2d(big_multidim):
|
||
|
td_pca=pca_comp(big_multidim)
|
||
|
plt.scatter(td_pca[:,0], td_pca[:,1])
|
||
|
|
||
|
def cluster_vis(data, cluster_assign):
|
||
|
pca=PCA(n_components=2)
|
||
|
td_norm=StandardScaler().fit_transform(data)
|
||
|
td_pca=pca.fit_transform(td_norm)
|
||
|
colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a',
|
||
|
'#f781bf', '#a65628', '#984ea3',
|
||
|
'#999999', '#e41a1c', '#dede00']),
|
||
|
int(max(clu) + 1))))
|
||
|
colors = np.append(colors, ["#000000"])
|
||
|
plt.figure(figsize=(8, 8))
|
||
|
plt.scatter(td_norm[:, 0], td_norm[:, 1], s=10, color=colors[cluster_assign])
|
||
|
plt.show()
|
||
|
|
||
|
#affinity prop- slow, but ok if you don't have any idea how many you want
|
||
|
def affinity_prop(data, damping=.77, preference=-70):
|
||
|
td_norm=StandardScaler().fit_transform(data)
|
||
|
db = AffinityPropagation(damping=damping,preference=preference).fit(td)
|
||
|
y=db.predict(td_norm)
|
||
|
return y
|
||
|
|
||
|
#DBSCAN- slightly faster but can label your dataset as all outliers
|
||
|
def dbscan(data, eps=.3):
|
||
|
td_norm=StandardScaler().fit_transform(data)
|
||
|
db = DBSCAN(eps=eps).fit(td)
|
||
|
y=db.labels_.astype(np.int)
|
||
|
return y
|
||
|
|
||
|
#K-means clustering- the classic
|
||
|
def kmeans(data, num_clusters):
|
||
|
td_norm=StandardScaler().fit_transform(data)
|
||
|
db = KMeans(n_clusters=num_clusters).fit(td)
|
||
|
y=db.labels_.astype(np.int)
|
||
|
return y
|
||
|
|
||
|
#Spectral Clustering- Seems to work really well
|
||
|
def spectral(data, num_clusters):
|
||
|
td_norm=StandardScaler().fit_transform(data)
|
||
|
db = SpectralClustering(n_clusters=num_clusters).fit(td)
|
||
|
y=db.labels_.astype(np.int)
|
||
|
return y
|