mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-15 07:36:18 +00:00
220 lines
7.8 KiB
Python
220 lines
7.8 KiB
Python
|
# Titan Robotics Team 2022: CUDA-based Regressions Module
|
||
|
# Written by Arthur Lu & Jacob Levine
|
||
|
# Notes:
|
||
|
# this module has been automatically inegrated into analysis.py, and should be callable as a class from the package
|
||
|
# this module is cuda-optimized and vectorized (except for one small part)
|
||
|
# setup:
|
||
|
|
||
|
__version__ = "1.0.0.004"
|
||
|
|
||
|
# changelog should be viewed using print(analysis.regression.__changelog__)
|
||
|
__changelog__ = """
|
||
|
1.0.0.004:
|
||
|
- bug fixes
|
||
|
- fixed changelog
|
||
|
1.0.0.003:
|
||
|
- bug fixes
|
||
|
1.0.0.002:
|
||
|
-Added more parameters to log, exponential, polynomial
|
||
|
-Added SigmoidalRegKernelArthur, because Arthur apparently needs
|
||
|
to train the scaling and shifting of sigmoids
|
||
|
1.0.0.001:
|
||
|
-initial release, with linear, log, exponential, polynomial, and sigmoid kernels
|
||
|
-already vectorized (except for polynomial generation) and CUDA-optimized
|
||
|
"""
|
||
|
|
||
|
__author__ = (
|
||
|
"Jacob Levine <jlevine@imsa.edu>",
|
||
|
"Arthur Lu <learthurgo@gmail.com>"
|
||
|
)
|
||
|
|
||
|
__all__ = [
|
||
|
'factorial',
|
||
|
'take_all_pwrs',
|
||
|
'num_poly_terms',
|
||
|
'set_device',
|
||
|
'LinearRegKernel',
|
||
|
'SigmoidalRegKernel',
|
||
|
'LogRegKernel',
|
||
|
'PolyRegKernel',
|
||
|
'ExpRegKernel',
|
||
|
'SigmoidalRegKernelArthur',
|
||
|
'SGDTrain',
|
||
|
'CustomTrain'
|
||
|
]
|
||
|
|
||
|
import torch
|
||
|
|
||
|
global device
|
||
|
|
||
|
device = "cuda:0" if torch.torch.cuda.is_available() else "cpu"
|
||
|
|
||
|
#todo: document completely
|
||
|
|
||
|
def set_device(self, new_device):
|
||
|
device=new_device
|
||
|
|
||
|
class LinearRegKernel():
|
||
|
parameters= []
|
||
|
weights=None
|
||
|
bias=None
|
||
|
def __init__(self, num_vars):
|
||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.parameters=[self.weights,self.bias]
|
||
|
def forward(self,mtx):
|
||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||
|
return torch.matmul(self.weights,mtx)+long_bias
|
||
|
|
||
|
class SigmoidalRegKernel():
|
||
|
parameters= []
|
||
|
weights=None
|
||
|
bias=None
|
||
|
sigmoid=torch.nn.Sigmoid()
|
||
|
def __init__(self, num_vars):
|
||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.parameters=[self.weights,self.bias]
|
||
|
def forward(self,mtx):
|
||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||
|
return self.sigmoid(torch.matmul(self.weights,mtx)+long_bias)
|
||
|
|
||
|
class SigmoidalRegKernelArthur():
|
||
|
parameters= []
|
||
|
weights=None
|
||
|
in_bias=None
|
||
|
scal_mult=None
|
||
|
out_bias=None
|
||
|
sigmoid=torch.nn.Sigmoid()
|
||
|
def __init__(self, num_vars):
|
||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||
|
def forward(self,mtx):
|
||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||
|
return (self.scal_mult*self.sigmoid(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||
|
|
||
|
class LogRegKernel():
|
||
|
parameters= []
|
||
|
weights=None
|
||
|
in_bias=None
|
||
|
scal_mult=None
|
||
|
out_bias=None
|
||
|
def __init__(self, num_vars):
|
||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||
|
def forward(self,mtx):
|
||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||
|
return (self.scal_mult*torch.log(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||
|
|
||
|
class ExpRegKernel():
|
||
|
parameters= []
|
||
|
weights=None
|
||
|
in_bias=None
|
||
|
scal_mult=None
|
||
|
out_bias=None
|
||
|
def __init__(self, num_vars):
|
||
|
self.weights=torch.rand(num_vars, requires_grad=True, device=device)
|
||
|
self.in_bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.scal_mult=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.out_bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.parameters=[self.weights,self.in_bias, self.scal_mult, self.out_bias]
|
||
|
def forward(self,mtx):
|
||
|
long_in_bias=self.in_bias.repeat([1,mtx.size()[1]])
|
||
|
long_out_bias=self.out_bias.repeat([1,mtx.size()[1]])
|
||
|
return (self.scal_mult*torch.exp(torch.matmul(self.weights,mtx)+long_in_bias))+long_out_bias
|
||
|
|
||
|
class PolyRegKernel():
|
||
|
parameters= []
|
||
|
weights=None
|
||
|
bias=None
|
||
|
power=None
|
||
|
def __init__(self, num_vars, power):
|
||
|
self.power=power
|
||
|
num_terms=self.num_poly_terms(num_vars, power)
|
||
|
self.weights=torch.rand(num_terms, requires_grad=True, device=device)
|
||
|
self.bias=torch.rand(1, requires_grad=True, device=device)
|
||
|
self.parameters=[self.weights,self.bias]
|
||
|
def num_poly_terms(self,num_vars, power):
|
||
|
if power == 0:
|
||
|
return 0
|
||
|
return int(self.factorial(num_vars+power-1) / self.factorial(power) / self.factorial(num_vars-1)) + self.num_poly_terms(num_vars, power-1)
|
||
|
def factorial(self,n):
|
||
|
if n==0:
|
||
|
return 1
|
||
|
else:
|
||
|
return n*self.factorial(n-1)
|
||
|
def take_all_pwrs(self, vec, pwr):
|
||
|
#todo: vectorize (kinda)
|
||
|
combins=torch.combinations(vec, r=pwr, with_replacement=True)
|
||
|
out=torch.ones(combins.size()[0]).to(device).to(torch.float)
|
||
|
for i in torch.t(combins).to(device).to(torch.float):
|
||
|
out *= i
|
||
|
if pwr == 1:
|
||
|
return out
|
||
|
else:
|
||
|
return torch.cat((out,self.take_all_pwrs(vec, pwr-1)))
|
||
|
def forward(self,mtx):
|
||
|
#TODO: Vectorize the last part
|
||
|
cols=[]
|
||
|
for i in torch.t(mtx):
|
||
|
cols.append(self.take_all_pwrs(i,self.power))
|
||
|
new_mtx=torch.t(torch.stack(cols))
|
||
|
long_bias=self.bias.repeat([1,mtx.size()[1]])
|
||
|
return torch.matmul(self.weights,new_mtx)+long_bias
|
||
|
|
||
|
def SGDTrain(self, kernel, data, ground, loss=torch.nn.MSELoss(), iterations=1000, learning_rate=.1, return_losses=False):
|
||
|
optim=torch.optim.SGD(kernel.parameters, lr=learning_rate)
|
||
|
data_cuda=data.to(device)
|
||
|
ground_cuda=ground.to(device)
|
||
|
if (return_losses):
|
||
|
losses=[]
|
||
|
for i in range(iterations):
|
||
|
with torch.set_grad_enabled(True):
|
||
|
optim.zero_grad()
|
||
|
pred=kernel.forward(data_cuda)
|
||
|
ls=loss(pred,ground_cuda)
|
||
|
losses.append(ls.item())
|
||
|
ls.backward()
|
||
|
optim.step()
|
||
|
return [kernel,losses]
|
||
|
else:
|
||
|
for i in range(iterations):
|
||
|
with torch.set_grad_enabled(True):
|
||
|
optim.zero_grad()
|
||
|
pred=kernel.forward(data_cuda)
|
||
|
ls=loss(pred,ground_cuda)
|
||
|
ls.backward()
|
||
|
optim.step()
|
||
|
return kernel
|
||
|
|
||
|
def CustomTrain(self, kernel, optim, data, ground, loss=torch.nn.MSELoss(), iterations=1000, return_losses=False):
|
||
|
data_cuda=data.to(device)
|
||
|
ground_cuda=ground.to(device)
|
||
|
if (return_losses):
|
||
|
losses=[]
|
||
|
for i in range(iterations):
|
||
|
with torch.set_grad_enabled(True):
|
||
|
optim.zero_grad()
|
||
|
pred=kernel.forward(data)
|
||
|
ls=loss(pred,ground)
|
||
|
losses.append(ls.item())
|
||
|
ls.backward()
|
||
|
optim.step()
|
||
|
return [kernel,losses]
|
||
|
else:
|
||
|
for i in range(iterations):
|
||
|
with torch.set_grad_enabled(True):
|
||
|
optim.zero_grad()
|
||
|
pred=kernel.forward(data_cuda)
|
||
|
ls=loss(pred,ground_cuda)
|
||
|
ls.backward()
|
||
|
optim.step()
|
||
|
return kernel
|