mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-10 06:54:44 +00:00
45 lines
1.9 KiB
Python
45 lines
1.9 KiB
Python
|
# Titan Robotics Team 2022: KNN submodule
|
||
|
# Written by Arthur Lu
|
||
|
# Notes:
|
||
|
# this should be imported as a python module using 'from tra_analysis import KNN'
|
||
|
# setup:
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
|
||
|
__changelog__ = """changelog:
|
||
|
1.0.0:
|
||
|
- ported analysis.KNN() here
|
||
|
- removed classness
|
||
|
"""
|
||
|
|
||
|
__author__ = (
|
||
|
"Arthur Lu <learthurgo@gmail.com>",
|
||
|
"James Pan <zpan@imsa.edu>"
|
||
|
)
|
||
|
|
||
|
__all__ = [
|
||
|
'knn_classifier',
|
||
|
'knn_regressor'
|
||
|
]
|
||
|
|
||
|
import sklearn
|
||
|
from sklearn import model_selection, neighbors
|
||
|
from . import ClassificationMetric, RegressionMetric
|
||
|
|
||
|
def knn_classifier(data, labels, n_neighbors = 5, test_size = 0.3, algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=None, p=2, weights='uniform'): #expects *2d data and 1d labels post-scaling
|
||
|
|
||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
|
model = sklearn.neighbors.KNeighborsClassifier(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||
|
model.fit(data_train, labels_train)
|
||
|
predictions = model.predict(data_test)
|
||
|
|
||
|
return model, ClassificationMetric(predictions, labels_test)
|
||
|
|
||
|
def knn_regressor(data, outputs, n_neighbors = 5, test_size = 0.3, weights = "uniform", algorithm = "auto", leaf_size = 30, p = 2, metric = "minkowski", metric_params = None, n_jobs = None):
|
||
|
|
||
|
data_train, data_test, outputs_train, outputs_test = sklearn.model_selection.train_test_split(data, outputs, test_size=test_size, random_state=1)
|
||
|
model = sklearn.neighbors.KNeighborsRegressor(n_neighbors = n_neighbors, weights = weights, algorithm = algorithm, leaf_size = leaf_size, p = p, metric = metric, metric_params = metric_params, n_jobs = n_jobs)
|
||
|
model.fit(data_train, outputs_train)
|
||
|
predictions = model.predict(data_test)
|
||
|
|
||
|
return model, RegressionMetric.RegressionMetric(predictions, outputs_test)
|