mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-15 17:45:55 +00:00
1092 lines
38 KiB
JavaScript
1092 lines
38 KiB
JavaScript
|
/**
|
|||
|
* Advanced Encryption Standard (AES) implementation.
|
|||
|
*
|
|||
|
* This implementation is based on the public domain library 'jscrypto' which
|
|||
|
* was written by:
|
|||
|
*
|
|||
|
* Emily Stark (estark@stanford.edu)
|
|||
|
* Mike Hamburg (mhamburg@stanford.edu)
|
|||
|
* Dan Boneh (dabo@cs.stanford.edu)
|
|||
|
*
|
|||
|
* Parts of this code are based on the OpenSSL implementation of AES:
|
|||
|
* http://www.openssl.org
|
|||
|
*
|
|||
|
* @author Dave Longley
|
|||
|
*
|
|||
|
* Copyright (c) 2010-2014 Digital Bazaar, Inc.
|
|||
|
*/
|
|||
|
var forge = require('./forge');
|
|||
|
require('./cipher');
|
|||
|
require('./cipherModes');
|
|||
|
require('./util');
|
|||
|
|
|||
|
/* AES API */
|
|||
|
module.exports = forge.aes = forge.aes || {};
|
|||
|
|
|||
|
/**
|
|||
|
* Deprecated. Instead, use:
|
|||
|
*
|
|||
|
* var cipher = forge.cipher.createCipher('AES-<mode>', key);
|
|||
|
* cipher.start({iv: iv});
|
|||
|
*
|
|||
|
* Creates an AES cipher object to encrypt data using the given symmetric key.
|
|||
|
* The output will be stored in the 'output' member of the returned cipher.
|
|||
|
*
|
|||
|
* The key and iv may be given as a string of bytes, an array of bytes,
|
|||
|
* a byte buffer, or an array of 32-bit words.
|
|||
|
*
|
|||
|
* @param key the symmetric key to use.
|
|||
|
* @param iv the initialization vector to use.
|
|||
|
* @param output the buffer to write to, null to create one.
|
|||
|
* @param mode the cipher mode to use (default: 'CBC').
|
|||
|
*
|
|||
|
* @return the cipher.
|
|||
|
*/
|
|||
|
forge.aes.startEncrypting = function(key, iv, output, mode) {
|
|||
|
var cipher = _createCipher({
|
|||
|
key: key,
|
|||
|
output: output,
|
|||
|
decrypt: false,
|
|||
|
mode: mode
|
|||
|
});
|
|||
|
cipher.start(iv);
|
|||
|
return cipher;
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* Deprecated. Instead, use:
|
|||
|
*
|
|||
|
* var cipher = forge.cipher.createCipher('AES-<mode>', key);
|
|||
|
*
|
|||
|
* Creates an AES cipher object to encrypt data using the given symmetric key.
|
|||
|
*
|
|||
|
* The key may be given as a string of bytes, an array of bytes, a
|
|||
|
* byte buffer, or an array of 32-bit words.
|
|||
|
*
|
|||
|
* @param key the symmetric key to use.
|
|||
|
* @param mode the cipher mode to use (default: 'CBC').
|
|||
|
*
|
|||
|
* @return the cipher.
|
|||
|
*/
|
|||
|
forge.aes.createEncryptionCipher = function(key, mode) {
|
|||
|
return _createCipher({
|
|||
|
key: key,
|
|||
|
output: null,
|
|||
|
decrypt: false,
|
|||
|
mode: mode
|
|||
|
});
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* Deprecated. Instead, use:
|
|||
|
*
|
|||
|
* var decipher = forge.cipher.createDecipher('AES-<mode>', key);
|
|||
|
* decipher.start({iv: iv});
|
|||
|
*
|
|||
|
* Creates an AES cipher object to decrypt data using the given symmetric key.
|
|||
|
* The output will be stored in the 'output' member of the returned cipher.
|
|||
|
*
|
|||
|
* The key and iv may be given as a string of bytes, an array of bytes,
|
|||
|
* a byte buffer, or an array of 32-bit words.
|
|||
|
*
|
|||
|
* @param key the symmetric key to use.
|
|||
|
* @param iv the initialization vector to use.
|
|||
|
* @param output the buffer to write to, null to create one.
|
|||
|
* @param mode the cipher mode to use (default: 'CBC').
|
|||
|
*
|
|||
|
* @return the cipher.
|
|||
|
*/
|
|||
|
forge.aes.startDecrypting = function(key, iv, output, mode) {
|
|||
|
var cipher = _createCipher({
|
|||
|
key: key,
|
|||
|
output: output,
|
|||
|
decrypt: true,
|
|||
|
mode: mode
|
|||
|
});
|
|||
|
cipher.start(iv);
|
|||
|
return cipher;
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* Deprecated. Instead, use:
|
|||
|
*
|
|||
|
* var decipher = forge.cipher.createDecipher('AES-<mode>', key);
|
|||
|
*
|
|||
|
* Creates an AES cipher object to decrypt data using the given symmetric key.
|
|||
|
*
|
|||
|
* The key may be given as a string of bytes, an array of bytes, a
|
|||
|
* byte buffer, or an array of 32-bit words.
|
|||
|
*
|
|||
|
* @param key the symmetric key to use.
|
|||
|
* @param mode the cipher mode to use (default: 'CBC').
|
|||
|
*
|
|||
|
* @return the cipher.
|
|||
|
*/
|
|||
|
forge.aes.createDecryptionCipher = function(key, mode) {
|
|||
|
return _createCipher({
|
|||
|
key: key,
|
|||
|
output: null,
|
|||
|
decrypt: true,
|
|||
|
mode: mode
|
|||
|
});
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* Creates a new AES cipher algorithm object.
|
|||
|
*
|
|||
|
* @param name the name of the algorithm.
|
|||
|
* @param mode the mode factory function.
|
|||
|
*
|
|||
|
* @return the AES algorithm object.
|
|||
|
*/
|
|||
|
forge.aes.Algorithm = function(name, mode) {
|
|||
|
if(!init) {
|
|||
|
initialize();
|
|||
|
}
|
|||
|
var self = this;
|
|||
|
self.name = name;
|
|||
|
self.mode = new mode({
|
|||
|
blockSize: 16,
|
|||
|
cipher: {
|
|||
|
encrypt: function(inBlock, outBlock) {
|
|||
|
return _updateBlock(self._w, inBlock, outBlock, false);
|
|||
|
},
|
|||
|
decrypt: function(inBlock, outBlock) {
|
|||
|
return _updateBlock(self._w, inBlock, outBlock, true);
|
|||
|
}
|
|||
|
}
|
|||
|
});
|
|||
|
self._init = false;
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* Initializes this AES algorithm by expanding its key.
|
|||
|
*
|
|||
|
* @param options the options to use.
|
|||
|
* key the key to use with this algorithm.
|
|||
|
* decrypt true if the algorithm should be initialized for decryption,
|
|||
|
* false for encryption.
|
|||
|
*/
|
|||
|
forge.aes.Algorithm.prototype.initialize = function(options) {
|
|||
|
if(this._init) {
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
var key = options.key;
|
|||
|
var tmp;
|
|||
|
|
|||
|
/* Note: The key may be a string of bytes, an array of bytes, a byte
|
|||
|
buffer, or an array of 32-bit integers. If the key is in bytes, then
|
|||
|
it must be 16, 24, or 32 bytes in length. If it is in 32-bit
|
|||
|
integers, it must be 4, 6, or 8 integers long. */
|
|||
|
|
|||
|
if(typeof key === 'string' &&
|
|||
|
(key.length === 16 || key.length === 24 || key.length === 32)) {
|
|||
|
// convert key string into byte buffer
|
|||
|
key = forge.util.createBuffer(key);
|
|||
|
} else if(forge.util.isArray(key) &&
|
|||
|
(key.length === 16 || key.length === 24 || key.length === 32)) {
|
|||
|
// convert key integer array into byte buffer
|
|||
|
tmp = key;
|
|||
|
key = forge.util.createBuffer();
|
|||
|
for(var i = 0; i < tmp.length; ++i) {
|
|||
|
key.putByte(tmp[i]);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// convert key byte buffer into 32-bit integer array
|
|||
|
if(!forge.util.isArray(key)) {
|
|||
|
tmp = key;
|
|||
|
key = [];
|
|||
|
|
|||
|
// key lengths of 16, 24, 32 bytes allowed
|
|||
|
var len = tmp.length();
|
|||
|
if(len === 16 || len === 24 || len === 32) {
|
|||
|
len = len >>> 2;
|
|||
|
for(var i = 0; i < len; ++i) {
|
|||
|
key.push(tmp.getInt32());
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// key must be an array of 32-bit integers by now
|
|||
|
if(!forge.util.isArray(key) ||
|
|||
|
!(key.length === 4 || key.length === 6 || key.length === 8)) {
|
|||
|
throw new Error('Invalid key parameter.');
|
|||
|
}
|
|||
|
|
|||
|
// encryption operation is always used for these modes
|
|||
|
var mode = this.mode.name;
|
|||
|
var encryptOp = (['CFB', 'OFB', 'CTR', 'GCM'].indexOf(mode) !== -1);
|
|||
|
|
|||
|
// do key expansion
|
|||
|
this._w = _expandKey(key, options.decrypt && !encryptOp);
|
|||
|
this._init = true;
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* Expands a key. Typically only used for testing.
|
|||
|
*
|
|||
|
* @param key the symmetric key to expand, as an array of 32-bit words.
|
|||
|
* @param decrypt true to expand for decryption, false for encryption.
|
|||
|
*
|
|||
|
* @return the expanded key.
|
|||
|
*/
|
|||
|
forge.aes._expandKey = function(key, decrypt) {
|
|||
|
if(!init) {
|
|||
|
initialize();
|
|||
|
}
|
|||
|
return _expandKey(key, decrypt);
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* Updates a single block. Typically only used for testing.
|
|||
|
*
|
|||
|
* @param w the expanded key to use.
|
|||
|
* @param input an array of block-size 32-bit words.
|
|||
|
* @param output an array of block-size 32-bit words.
|
|||
|
* @param decrypt true to decrypt, false to encrypt.
|
|||
|
*/
|
|||
|
forge.aes._updateBlock = _updateBlock;
|
|||
|
|
|||
|
/** Register AES algorithms **/
|
|||
|
|
|||
|
registerAlgorithm('AES-ECB', forge.cipher.modes.ecb);
|
|||
|
registerAlgorithm('AES-CBC', forge.cipher.modes.cbc);
|
|||
|
registerAlgorithm('AES-CFB', forge.cipher.modes.cfb);
|
|||
|
registerAlgorithm('AES-OFB', forge.cipher.modes.ofb);
|
|||
|
registerAlgorithm('AES-CTR', forge.cipher.modes.ctr);
|
|||
|
registerAlgorithm('AES-GCM', forge.cipher.modes.gcm);
|
|||
|
|
|||
|
function registerAlgorithm(name, mode) {
|
|||
|
var factory = function() {
|
|||
|
return new forge.aes.Algorithm(name, mode);
|
|||
|
};
|
|||
|
forge.cipher.registerAlgorithm(name, factory);
|
|||
|
}
|
|||
|
|
|||
|
/** AES implementation **/
|
|||
|
|
|||
|
var init = false; // not yet initialized
|
|||
|
var Nb = 4; // number of words comprising the state (AES = 4)
|
|||
|
var sbox; // non-linear substitution table used in key expansion
|
|||
|
var isbox; // inversion of sbox
|
|||
|
var rcon; // round constant word array
|
|||
|
var mix; // mix-columns table
|
|||
|
var imix; // inverse mix-columns table
|
|||
|
|
|||
|
/**
|
|||
|
* Performs initialization, ie: precomputes tables to optimize for speed.
|
|||
|
*
|
|||
|
* One way to understand how AES works is to imagine that 'addition' and
|
|||
|
* 'multiplication' are interfaces that require certain mathematical
|
|||
|
* properties to hold true (ie: they are associative) but they might have
|
|||
|
* different implementations and produce different kinds of results ...
|
|||
|
* provided that their mathematical properties remain true. AES defines
|
|||
|
* its own methods of addition and multiplication but keeps some important
|
|||
|
* properties the same, ie: associativity and distributivity. The
|
|||
|
* explanation below tries to shed some light on how AES defines addition
|
|||
|
* and multiplication of bytes and 32-bit words in order to perform its
|
|||
|
* encryption and decryption algorithms.
|
|||
|
*
|
|||
|
* The basics:
|
|||
|
*
|
|||
|
* The AES algorithm views bytes as binary representations of polynomials
|
|||
|
* that have either 1 or 0 as the coefficients. It defines the addition
|
|||
|
* or subtraction of two bytes as the XOR operation. It also defines the
|
|||
|
* multiplication of two bytes as a finite field referred to as GF(2^8)
|
|||
|
* (Note: 'GF' means "Galois Field" which is a field that contains a finite
|
|||
|
* number of elements so GF(2^8) has 256 elements).
|
|||
|
*
|
|||
|
* This means that any two bytes can be represented as binary polynomials;
|
|||
|
* when they multiplied together and modularly reduced by an irreducible
|
|||
|
* polynomial of the 8th degree, the results are the field GF(2^8). The
|
|||
|
* specific irreducible polynomial that AES uses in hexadecimal is 0x11b.
|
|||
|
* This multiplication is associative with 0x01 as the identity:
|
|||
|
*
|
|||
|
* (b * 0x01 = GF(b, 0x01) = b).
|
|||
|
*
|
|||
|
* The operation GF(b, 0x02) can be performed at the byte level by left
|
|||
|
* shifting b once and then XOR'ing it (to perform the modular reduction)
|
|||
|
* with 0x11b if b is >= 128. Repeated application of the multiplication
|
|||
|
* of 0x02 can be used to implement the multiplication of any two bytes.
|
|||
|
*
|
|||
|
* For instance, multiplying 0x57 and 0x13, denoted as GF(0x57, 0x13), can
|
|||
|
* be performed by factoring 0x13 into 0x01, 0x02, and 0x10. Then these
|
|||
|
* factors can each be multiplied by 0x57 and then added together. To do
|
|||
|
* the multiplication, values for 0x57 multiplied by each of these 3 factors
|
|||
|
* can be precomputed and stored in a table. To add them, the values from
|
|||
|
* the table are XOR'd together.
|
|||
|
*
|
|||
|
* AES also defines addition and multiplication of words, that is 4-byte
|
|||
|
* numbers represented as polynomials of 3 degrees where the coefficients
|
|||
|
* are the values of the bytes.
|
|||
|
*
|
|||
|
* The word [a0, a1, a2, a3] is a polynomial a3x^3 + a2x^2 + a1x + a0.
|
|||
|
*
|
|||
|
* Addition is performed by XOR'ing like powers of x. Multiplication
|
|||
|
* is performed in two steps, the first is an algebriac expansion as
|
|||
|
* you would do normally (where addition is XOR). But the result is
|
|||
|
* a polynomial larger than 3 degrees and thus it cannot fit in a word. So
|
|||
|
* next the result is modularly reduced by an AES-specific polynomial of
|
|||
|
* degree 4 which will always produce a polynomial of less than 4 degrees
|
|||
|
* such that it will fit in a word. In AES, this polynomial is x^4 + 1.
|
|||
|
*
|
|||
|
* The modular product of two polynomials 'a' and 'b' is thus:
|
|||
|
*
|
|||
|
* d(x) = d3x^3 + d2x^2 + d1x + d0
|
|||
|
* with
|
|||
|
* d0 = GF(a0, b0) ^ GF(a3, b1) ^ GF(a2, b2) ^ GF(a1, b3)
|
|||
|
* d1 = GF(a1, b0) ^ GF(a0, b1) ^ GF(a3, b2) ^ GF(a2, b3)
|
|||
|
* d2 = GF(a2, b0) ^ GF(a1, b1) ^ GF(a0, b2) ^ GF(a3, b3)
|
|||
|
* d3 = GF(a3, b0) ^ GF(a2, b1) ^ GF(a1, b2) ^ GF(a0, b3)
|
|||
|
*
|
|||
|
* As a matrix:
|
|||
|
*
|
|||
|
* [d0] = [a0 a3 a2 a1][b0]
|
|||
|
* [d1] [a1 a0 a3 a2][b1]
|
|||
|
* [d2] [a2 a1 a0 a3][b2]
|
|||
|
* [d3] [a3 a2 a1 a0][b3]
|
|||
|
*
|
|||
|
* Special polynomials defined by AES (0x02 == {02}):
|
|||
|
* a(x) = {03}x^3 + {01}x^2 + {01}x + {02}
|
|||
|
* a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}.
|
|||
|
*
|
|||
|
* These polynomials are used in the MixColumns() and InverseMixColumns()
|
|||
|
* operations, respectively, to cause each element in the state to affect
|
|||
|
* the output (referred to as diffusing).
|
|||
|
*
|
|||
|
* RotWord() uses: a0 = a1 = a2 = {00} and a3 = {01}, which is the
|
|||
|
* polynomial x3.
|
|||
|
*
|
|||
|
* The ShiftRows() method modifies the last 3 rows in the state (where
|
|||
|
* the state is 4 words with 4 bytes per word) by shifting bytes cyclically.
|
|||
|
* The 1st byte in the second row is moved to the end of the row. The 1st
|
|||
|
* and 2nd bytes in the third row are moved to the end of the row. The 1st,
|
|||
|
* 2nd, and 3rd bytes are moved in the fourth row.
|
|||
|
*
|
|||
|
* More details on how AES arithmetic works:
|
|||
|
*
|
|||
|
* In the polynomial representation of binary numbers, XOR performs addition
|
|||
|
* and subtraction and multiplication in GF(2^8) denoted as GF(a, b)
|
|||
|
* corresponds with the multiplication of polynomials modulo an irreducible
|
|||
|
* polynomial of degree 8. In other words, for AES, GF(a, b) will multiply
|
|||
|
* polynomial 'a' with polynomial 'b' and then do a modular reduction by
|
|||
|
* an AES-specific irreducible polynomial of degree 8.
|
|||
|
*
|
|||
|
* A polynomial is irreducible if its only divisors are one and itself. For
|
|||
|
* the AES algorithm, this irreducible polynomial is:
|
|||
|
*
|
|||
|
* m(x) = x^8 + x^4 + x^3 + x + 1,
|
|||
|
*
|
|||
|
* or {01}{1b} in hexadecimal notation, where each coefficient is a bit:
|
|||
|
* 100011011 = 283 = 0x11b.
|
|||
|
*
|
|||
|
* For example, GF(0x57, 0x83) = 0xc1 because
|
|||
|
*
|
|||
|
* 0x57 = 87 = 01010111 = x^6 + x^4 + x^2 + x + 1
|
|||
|
* 0x85 = 131 = 10000101 = x^7 + x + 1
|
|||
|
*
|
|||
|
* (x^6 + x^4 + x^2 + x + 1) * (x^7 + x + 1)
|
|||
|
* = x^13 + x^11 + x^9 + x^8 + x^7 +
|
|||
|
* x^7 + x^5 + x^3 + x^2 + x +
|
|||
|
* x^6 + x^4 + x^2 + x + 1
|
|||
|
* = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 = y
|
|||
|
* y modulo (x^8 + x^4 + x^3 + x + 1)
|
|||
|
* = x^7 + x^6 + 1.
|
|||
|
*
|
|||
|
* The modular reduction by m(x) guarantees the result will be a binary
|
|||
|
* polynomial of less than degree 8, so that it can fit in a byte.
|
|||
|
*
|
|||
|
* The operation to multiply a binary polynomial b with x (the polynomial
|
|||
|
* x in binary representation is 00000010) is:
|
|||
|
*
|
|||
|
* b_7x^8 + b_6x^7 + b_5x^6 + b_4x^5 + b_3x^4 + b_2x^3 + b_1x^2 + b_0x^1
|
|||
|
*
|
|||
|
* To get GF(b, x) we must reduce that by m(x). If b_7 is 0 (that is the
|
|||
|
* most significant bit is 0 in b) then the result is already reduced. If
|
|||
|
* it is 1, then we can reduce it by subtracting m(x) via an XOR.
|
|||
|
*
|
|||
|
* It follows that multiplication by x (00000010 or 0x02) can be implemented
|
|||
|
* by performing a left shift followed by a conditional bitwise XOR with
|
|||
|
* 0x1b. This operation on bytes is denoted by xtime(). Multiplication by
|
|||
|
* higher powers of x can be implemented by repeated application of xtime().
|
|||
|
*
|
|||
|
* By adding intermediate results, multiplication by any constant can be
|
|||
|
* implemented. For instance:
|
|||
|
*
|
|||
|
* GF(0x57, 0x13) = 0xfe because:
|
|||
|
*
|
|||
|
* xtime(b) = (b & 128) ? (b << 1 ^ 0x11b) : (b << 1)
|
|||
|
*
|
|||
|
* Note: We XOR with 0x11b instead of 0x1b because in javascript our
|
|||
|
* datatype for b can be larger than 1 byte, so a left shift will not
|
|||
|
* automatically eliminate bits that overflow a byte ... by XOR'ing the
|
|||
|
* overflow bit with 1 (the extra one from 0x11b) we zero it out.
|
|||
|
*
|
|||
|
* GF(0x57, 0x02) = xtime(0x57) = 0xae
|
|||
|
* GF(0x57, 0x04) = xtime(0xae) = 0x47
|
|||
|
* GF(0x57, 0x08) = xtime(0x47) = 0x8e
|
|||
|
* GF(0x57, 0x10) = xtime(0x8e) = 0x07
|
|||
|
*
|
|||
|
* GF(0x57, 0x13) = GF(0x57, (0x01 ^ 0x02 ^ 0x10))
|
|||
|
*
|
|||
|
* And by the distributive property (since XOR is addition and GF() is
|
|||
|
* multiplication):
|
|||
|
*
|
|||
|
* = GF(0x57, 0x01) ^ GF(0x57, 0x02) ^ GF(0x57, 0x10)
|
|||
|
* = 0x57 ^ 0xae ^ 0x07
|
|||
|
* = 0xfe.
|
|||
|
*/
|
|||
|
function initialize() {
|
|||
|
init = true;
|
|||
|
|
|||
|
/* Populate the Rcon table. These are the values given by
|
|||
|
[x^(i-1),{00},{00},{00}] where x^(i-1) are powers of x (and x = 0x02)
|
|||
|
in the field of GF(2^8), where i starts at 1.
|
|||
|
|
|||
|
rcon[0] = [0x00, 0x00, 0x00, 0x00]
|
|||
|
rcon[1] = [0x01, 0x00, 0x00, 0x00] 2^(1-1) = 2^0 = 1
|
|||
|
rcon[2] = [0x02, 0x00, 0x00, 0x00] 2^(2-1) = 2^1 = 2
|
|||
|
...
|
|||
|
rcon[9] = [0x1B, 0x00, 0x00, 0x00] 2^(9-1) = 2^8 = 0x1B
|
|||
|
rcon[10] = [0x36, 0x00, 0x00, 0x00] 2^(10-1) = 2^9 = 0x36
|
|||
|
|
|||
|
We only store the first byte because it is the only one used.
|
|||
|
*/
|
|||
|
rcon = [0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36];
|
|||
|
|
|||
|
// compute xtime table which maps i onto GF(i, 0x02)
|
|||
|
var xtime = new Array(256);
|
|||
|
for(var i = 0; i < 128; ++i) {
|
|||
|
xtime[i] = i << 1;
|
|||
|
xtime[i + 128] = (i + 128) << 1 ^ 0x11B;
|
|||
|
}
|
|||
|
|
|||
|
// compute all other tables
|
|||
|
sbox = new Array(256);
|
|||
|
isbox = new Array(256);
|
|||
|
mix = new Array(4);
|
|||
|
imix = new Array(4);
|
|||
|
for(var i = 0; i < 4; ++i) {
|
|||
|
mix[i] = new Array(256);
|
|||
|
imix[i] = new Array(256);
|
|||
|
}
|
|||
|
var e = 0, ei = 0, e2, e4, e8, sx, sx2, me, ime;
|
|||
|
for(var i = 0; i < 256; ++i) {
|
|||
|
/* We need to generate the SubBytes() sbox and isbox tables so that
|
|||
|
we can perform byte substitutions. This requires us to traverse
|
|||
|
all of the elements in GF, find their multiplicative inverses,
|
|||
|
and apply to each the following affine transformation:
|
|||
|
|
|||
|
bi' = bi ^ b(i + 4) mod 8 ^ b(i + 5) mod 8 ^ b(i + 6) mod 8 ^
|
|||
|
b(i + 7) mod 8 ^ ci
|
|||
|
for 0 <= i < 8, where bi is the ith bit of the byte, and ci is the
|
|||
|
ith bit of a byte c with the value {63} or {01100011}.
|
|||
|
|
|||
|
It is possible to traverse every possible value in a Galois field
|
|||
|
using what is referred to as a 'generator'. There are many
|
|||
|
generators (128 out of 256): 3,5,6,9,11,82 to name a few. To fully
|
|||
|
traverse GF we iterate 255 times, multiplying by our generator
|
|||
|
each time.
|
|||
|
|
|||
|
On each iteration we can determine the multiplicative inverse for
|
|||
|
the current element.
|
|||
|
|
|||
|
Suppose there is an element in GF 'e'. For a given generator 'g',
|
|||
|
e = g^x. The multiplicative inverse of e is g^(255 - x). It turns
|
|||
|
out that if use the inverse of a generator as another generator
|
|||
|
it will produce all of the corresponding multiplicative inverses
|
|||
|
at the same time. For this reason, we choose 5 as our inverse
|
|||
|
generator because it only requires 2 multiplies and 1 add and its
|
|||
|
inverse, 82, requires relatively few operations as well.
|
|||
|
|
|||
|
In order to apply the affine transformation, the multiplicative
|
|||
|
inverse 'ei' of 'e' can be repeatedly XOR'd (4 times) with a
|
|||
|
bit-cycling of 'ei'. To do this 'ei' is first stored in 's' and
|
|||
|
'x'. Then 's' is left shifted and the high bit of 's' is made the
|
|||
|
low bit. The resulting value is stored in 's'. Then 'x' is XOR'd
|
|||
|
with 's' and stored in 'x'. On each subsequent iteration the same
|
|||
|
operation is performed. When 4 iterations are complete, 'x' is
|
|||
|
XOR'd with 'c' (0x63) and the transformed value is stored in 'x'.
|
|||
|
For example:
|
|||
|
|
|||
|
s = 01000001
|
|||
|
x = 01000001
|
|||
|
|
|||
|
iteration 1: s = 10000010, x ^= s
|
|||
|
iteration 2: s = 00000101, x ^= s
|
|||
|
iteration 3: s = 00001010, x ^= s
|
|||
|
iteration 4: s = 00010100, x ^= s
|
|||
|
x ^= 0x63
|
|||
|
|
|||
|
This can be done with a loop where s = (s << 1) | (s >> 7). However,
|
|||
|
it can also be done by using a single 16-bit (in this case 32-bit)
|
|||
|
number 'sx'. Since XOR is an associative operation, we can set 'sx'
|
|||
|
to 'ei' and then XOR it with 'sx' left-shifted 1,2,3, and 4 times.
|
|||
|
The most significant bits will flow into the high 8 bit positions
|
|||
|
and be correctly XOR'd with one another. All that remains will be
|
|||
|
to cycle the high 8 bits by XOR'ing them all with the lower 8 bits
|
|||
|
afterwards.
|
|||
|
|
|||
|
At the same time we're populating sbox and isbox we can precompute
|
|||
|
the multiplication we'll need to do to do MixColumns() later.
|
|||
|
*/
|
|||
|
|
|||
|
// apply affine transformation
|
|||
|
sx = ei ^ (ei << 1) ^ (ei << 2) ^ (ei << 3) ^ (ei << 4);
|
|||
|
sx = (sx >> 8) ^ (sx & 255) ^ 0x63;
|
|||
|
|
|||
|
// update tables
|
|||
|
sbox[e] = sx;
|
|||
|
isbox[sx] = e;
|
|||
|
|
|||
|
/* Mixing columns is done using matrix multiplication. The columns
|
|||
|
that are to be mixed are each a single word in the current state.
|
|||
|
The state has Nb columns (4 columns). Therefore each column is a
|
|||
|
4 byte word. So to mix the columns in a single column 'c' where
|
|||
|
its rows are r0, r1, r2, and r3, we use the following matrix
|
|||
|
multiplication:
|
|||
|
|
|||
|
[2 3 1 1]*[r0,c]=[r'0,c]
|
|||
|
[1 2 3 1] [r1,c] [r'1,c]
|
|||
|
[1 1 2 3] [r2,c] [r'2,c]
|
|||
|
[3 1 1 2] [r3,c] [r'3,c]
|
|||
|
|
|||
|
r0, r1, r2, and r3 are each 1 byte of one of the words in the
|
|||
|
state (a column). To do matrix multiplication for each mixed
|
|||
|
column c' we multiply the corresponding row from the left matrix
|
|||
|
with the corresponding column from the right matrix. In total, we
|
|||
|
get 4 equations:
|
|||
|
|
|||
|
r0,c' = 2*r0,c + 3*r1,c + 1*r2,c + 1*r3,c
|
|||
|
r1,c' = 1*r0,c + 2*r1,c + 3*r2,c + 1*r3,c
|
|||
|
r2,c' = 1*r0,c + 1*r1,c + 2*r2,c + 3*r3,c
|
|||
|
r3,c' = 3*r0,c + 1*r1,c + 1*r2,c + 2*r3,c
|
|||
|
|
|||
|
As usual, the multiplication is as previously defined and the
|
|||
|
addition is XOR. In order to optimize mixing columns we can store
|
|||
|
the multiplication results in tables. If you think of the whole
|
|||
|
column as a word (it might help to visualize by mentally rotating
|
|||
|
the equations above by counterclockwise 90 degrees) then you can
|
|||
|
see that it would be useful to map the multiplications performed on
|
|||
|
each byte (r0, r1, r2, r3) onto a word as well. For instance, we
|
|||
|
could map 2*r0,1*r0,1*r0,3*r0 onto a word by storing 2*r0 in the
|
|||
|
highest 8 bits and 3*r0 in the lowest 8 bits (with the other two
|
|||
|
respectively in the middle). This means that a table can be
|
|||
|
constructed that uses r0 as an index to the word. We can do the
|
|||
|
same with r1, r2, and r3, creating a total of 4 tables.
|
|||
|
|
|||
|
To construct a full c', we can just look up each byte of c in
|
|||
|
their respective tables and XOR the results together.
|
|||
|
|
|||
|
Also, to build each table we only have to calculate the word
|
|||
|
for 2,1,1,3 for every byte ... which we can do on each iteration
|
|||
|
of this loop since we will iterate over every byte. After we have
|
|||
|
calculated 2,1,1,3 we can get the results for the other tables
|
|||
|
by cycling the byte at the end to the beginning. For instance
|
|||
|
we can take the result of table 2,1,1,3 and produce table 3,2,1,1
|
|||
|
by moving the right most byte to the left most position just like
|
|||
|
how you can imagine the 3 moved out of 2,1,1,3 and to the front
|
|||
|
to produce 3,2,1,1.
|
|||
|
|
|||
|
There is another optimization in that the same multiples of
|
|||
|
the current element we need in order to advance our generator
|
|||
|
to the next iteration can be reused in performing the 2,1,1,3
|
|||
|
calculation. We also calculate the inverse mix column tables,
|
|||
|
with e,9,d,b being the inverse of 2,1,1,3.
|
|||
|
|
|||
|
When we're done, and we need to actually mix columns, the first
|
|||
|
byte of each state word should be put through mix[0] (2,1,1,3),
|
|||
|
the second through mix[1] (3,2,1,1) and so forth. Then they should
|
|||
|
be XOR'd together to produce the fully mixed column.
|
|||
|
*/
|
|||
|
|
|||
|
// calculate mix and imix table values
|
|||
|
sx2 = xtime[sx];
|
|||
|
e2 = xtime[e];
|
|||
|
e4 = xtime[e2];
|
|||
|
e8 = xtime[e4];
|
|||
|
me =
|
|||
|
(sx2 << 24) ^ // 2
|
|||
|
(sx << 16) ^ // 1
|
|||
|
(sx << 8) ^ // 1
|
|||
|
(sx ^ sx2); // 3
|
|||
|
ime =
|
|||
|
(e2 ^ e4 ^ e8) << 24 ^ // E (14)
|
|||
|
(e ^ e8) << 16 ^ // 9
|
|||
|
(e ^ e4 ^ e8) << 8 ^ // D (13)
|
|||
|
(e ^ e2 ^ e8); // B (11)
|
|||
|
// produce each of the mix tables by rotating the 2,1,1,3 value
|
|||
|
for(var n = 0; n < 4; ++n) {
|
|||
|
mix[n][e] = me;
|
|||
|
imix[n][sx] = ime;
|
|||
|
// cycle the right most byte to the left most position
|
|||
|
// ie: 2,1,1,3 becomes 3,2,1,1
|
|||
|
me = me << 24 | me >>> 8;
|
|||
|
ime = ime << 24 | ime >>> 8;
|
|||
|
}
|
|||
|
|
|||
|
// get next element and inverse
|
|||
|
if(e === 0) {
|
|||
|
// 1 is the inverse of 1
|
|||
|
e = ei = 1;
|
|||
|
} else {
|
|||
|
// e = 2e + 2*2*2*(10e)) = multiply e by 82 (chosen generator)
|
|||
|
// ei = ei + 2*2*ei = multiply ei by 5 (inverse generator)
|
|||
|
e = e2 ^ xtime[xtime[xtime[e2 ^ e8]]];
|
|||
|
ei ^= xtime[xtime[ei]];
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Generates a key schedule using the AES key expansion algorithm.
|
|||
|
*
|
|||
|
* The AES algorithm takes the Cipher Key, K, and performs a Key Expansion
|
|||
|
* routine to generate a key schedule. The Key Expansion generates a total
|
|||
|
* of Nb*(Nr + 1) words: the algorithm requires an initial set of Nb words,
|
|||
|
* and each of the Nr rounds requires Nb words of key data. The resulting
|
|||
|
* key schedule consists of a linear array of 4-byte words, denoted [wi ],
|
|||
|
* with i in the range 0 ≤ i < Nb(Nr + 1).
|
|||
|
*
|
|||
|
* KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk)
|
|||
|
* AES-128 (Nb=4, Nk=4, Nr=10)
|
|||
|
* AES-192 (Nb=4, Nk=6, Nr=12)
|
|||
|
* AES-256 (Nb=4, Nk=8, Nr=14)
|
|||
|
* Note: Nr=Nk+6.
|
|||
|
*
|
|||
|
* Nb is the number of columns (32-bit words) comprising the State (or
|
|||
|
* number of bytes in a block). For AES, Nb=4.
|
|||
|
*
|
|||
|
* @param key the key to schedule (as an array of 32-bit words).
|
|||
|
* @param decrypt true to modify the key schedule to decrypt, false not to.
|
|||
|
*
|
|||
|
* @return the generated key schedule.
|
|||
|
*/
|
|||
|
function _expandKey(key, decrypt) {
|
|||
|
// copy the key's words to initialize the key schedule
|
|||
|
var w = key.slice(0);
|
|||
|
|
|||
|
/* RotWord() will rotate a word, moving the first byte to the last
|
|||
|
byte's position (shifting the other bytes left).
|
|||
|
|
|||
|
We will be getting the value of Rcon at i / Nk. 'i' will iterate
|
|||
|
from Nk to (Nb * Nr+1). Nk = 4 (4 byte key), Nb = 4 (4 words in
|
|||
|
a block), Nr = Nk + 6 (10). Therefore 'i' will iterate from
|
|||
|
4 to 44 (exclusive). Each time we iterate 4 times, i / Nk will
|
|||
|
increase by 1. We use a counter iNk to keep track of this.
|
|||
|
*/
|
|||
|
|
|||
|
// go through the rounds expanding the key
|
|||
|
var temp, iNk = 1;
|
|||
|
var Nk = w.length;
|
|||
|
var Nr1 = Nk + 6 + 1;
|
|||
|
var end = Nb * Nr1;
|
|||
|
for(var i = Nk; i < end; ++i) {
|
|||
|
temp = w[i - 1];
|
|||
|
if(i % Nk === 0) {
|
|||
|
// temp = SubWord(RotWord(temp)) ^ Rcon[i / Nk]
|
|||
|
temp =
|
|||
|
sbox[temp >>> 16 & 255] << 24 ^
|
|||
|
sbox[temp >>> 8 & 255] << 16 ^
|
|||
|
sbox[temp & 255] << 8 ^
|
|||
|
sbox[temp >>> 24] ^ (rcon[iNk] << 24);
|
|||
|
iNk++;
|
|||
|
} else if(Nk > 6 && (i % Nk === 4)) {
|
|||
|
// temp = SubWord(temp)
|
|||
|
temp =
|
|||
|
sbox[temp >>> 24] << 24 ^
|
|||
|
sbox[temp >>> 16 & 255] << 16 ^
|
|||
|
sbox[temp >>> 8 & 255] << 8 ^
|
|||
|
sbox[temp & 255];
|
|||
|
}
|
|||
|
w[i] = w[i - Nk] ^ temp;
|
|||
|
}
|
|||
|
|
|||
|
/* When we are updating a cipher block we always use the code path for
|
|||
|
encryption whether we are decrypting or not (to shorten code and
|
|||
|
simplify the generation of look up tables). However, because there
|
|||
|
are differences in the decryption algorithm, other than just swapping
|
|||
|
in different look up tables, we must transform our key schedule to
|
|||
|
account for these changes:
|
|||
|
|
|||
|
1. The decryption algorithm gets its key rounds in reverse order.
|
|||
|
2. The decryption algorithm adds the round key before mixing columns
|
|||
|
instead of afterwards.
|
|||
|
|
|||
|
We don't need to modify our key schedule to handle the first case,
|
|||
|
we can just traverse the key schedule in reverse order when decrypting.
|
|||
|
|
|||
|
The second case requires a little work.
|
|||
|
|
|||
|
The tables we built for performing rounds will take an input and then
|
|||
|
perform SubBytes() and MixColumns() or, for the decrypt version,
|
|||
|
InvSubBytes() and InvMixColumns(). But the decrypt algorithm requires
|
|||
|
us to AddRoundKey() before InvMixColumns(). This means we'll need to
|
|||
|
apply some transformations to the round key to inverse-mix its columns
|
|||
|
so they'll be correct for moving AddRoundKey() to after the state has
|
|||
|
had its columns inverse-mixed.
|
|||
|
|
|||
|
To inverse-mix the columns of the state when we're decrypting we use a
|
|||
|
lookup table that will apply InvSubBytes() and InvMixColumns() at the
|
|||
|
same time. However, the round key's bytes are not inverse-substituted
|
|||
|
in the decryption algorithm. To get around this problem, we can first
|
|||
|
substitute the bytes in the round key so that when we apply the
|
|||
|
transformation via the InvSubBytes()+InvMixColumns() table, it will
|
|||
|
undo our substitution leaving us with the original value that we
|
|||
|
want -- and then inverse-mix that value.
|
|||
|
|
|||
|
This change will correctly alter our key schedule so that we can XOR
|
|||
|
each round key with our already transformed decryption state. This
|
|||
|
allows us to use the same code path as the encryption algorithm.
|
|||
|
|
|||
|
We make one more change to the decryption key. Since the decryption
|
|||
|
algorithm runs in reverse from the encryption algorithm, we reverse
|
|||
|
the order of the round keys to avoid having to iterate over the key
|
|||
|
schedule backwards when running the encryption algorithm later in
|
|||
|
decryption mode. In addition to reversing the order of the round keys,
|
|||
|
we also swap each round key's 2nd and 4th rows. See the comments
|
|||
|
section where rounds are performed for more details about why this is
|
|||
|
done. These changes are done inline with the other substitution
|
|||
|
described above.
|
|||
|
*/
|
|||
|
if(decrypt) {
|
|||
|
var tmp;
|
|||
|
var m0 = imix[0];
|
|||
|
var m1 = imix[1];
|
|||
|
var m2 = imix[2];
|
|||
|
var m3 = imix[3];
|
|||
|
var wnew = w.slice(0);
|
|||
|
end = w.length;
|
|||
|
for(var i = 0, wi = end - Nb; i < end; i += Nb, wi -= Nb) {
|
|||
|
// do not sub the first or last round key (round keys are Nb
|
|||
|
// words) as no column mixing is performed before they are added,
|
|||
|
// but do change the key order
|
|||
|
if(i === 0 || i === (end - Nb)) {
|
|||
|
wnew[i] = w[wi];
|
|||
|
wnew[i + 1] = w[wi + 3];
|
|||
|
wnew[i + 2] = w[wi + 2];
|
|||
|
wnew[i + 3] = w[wi + 1];
|
|||
|
} else {
|
|||
|
// substitute each round key byte because the inverse-mix
|
|||
|
// table will inverse-substitute it (effectively cancel the
|
|||
|
// substitution because round key bytes aren't sub'd in
|
|||
|
// decryption mode) and swap indexes 3 and 1
|
|||
|
for(var n = 0; n < Nb; ++n) {
|
|||
|
tmp = w[wi + n];
|
|||
|
wnew[i + (3&-n)] =
|
|||
|
m0[sbox[tmp >>> 24]] ^
|
|||
|
m1[sbox[tmp >>> 16 & 255]] ^
|
|||
|
m2[sbox[tmp >>> 8 & 255]] ^
|
|||
|
m3[sbox[tmp & 255]];
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
w = wnew;
|
|||
|
}
|
|||
|
|
|||
|
return w;
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Updates a single block (16 bytes) using AES. The update will either
|
|||
|
* encrypt or decrypt the block.
|
|||
|
*
|
|||
|
* @param w the key schedule.
|
|||
|
* @param input the input block (an array of 32-bit words).
|
|||
|
* @param output the updated output block.
|
|||
|
* @param decrypt true to decrypt the block, false to encrypt it.
|
|||
|
*/
|
|||
|
function _updateBlock(w, input, output, decrypt) {
|
|||
|
/*
|
|||
|
Cipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
|
|||
|
begin
|
|||
|
byte state[4,Nb]
|
|||
|
state = in
|
|||
|
AddRoundKey(state, w[0, Nb-1])
|
|||
|
for round = 1 step 1 to Nr–1
|
|||
|
SubBytes(state)
|
|||
|
ShiftRows(state)
|
|||
|
MixColumns(state)
|
|||
|
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
|
|||
|
end for
|
|||
|
SubBytes(state)
|
|||
|
ShiftRows(state)
|
|||
|
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
|
|||
|
out = state
|
|||
|
end
|
|||
|
|
|||
|
InvCipher(byte in[4*Nb], byte out[4*Nb], word w[Nb*(Nr+1)])
|
|||
|
begin
|
|||
|
byte state[4,Nb]
|
|||
|
state = in
|
|||
|
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
|
|||
|
for round = Nr-1 step -1 downto 1
|
|||
|
InvShiftRows(state)
|
|||
|
InvSubBytes(state)
|
|||
|
AddRoundKey(state, w[round*Nb, (round+1)*Nb-1])
|
|||
|
InvMixColumns(state)
|
|||
|
end for
|
|||
|
InvShiftRows(state)
|
|||
|
InvSubBytes(state)
|
|||
|
AddRoundKey(state, w[0, Nb-1])
|
|||
|
out = state
|
|||
|
end
|
|||
|
*/
|
|||
|
|
|||
|
// Encrypt: AddRoundKey(state, w[0, Nb-1])
|
|||
|
// Decrypt: AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
|
|||
|
var Nr = w.length / 4 - 1;
|
|||
|
var m0, m1, m2, m3, sub;
|
|||
|
if(decrypt) {
|
|||
|
m0 = imix[0];
|
|||
|
m1 = imix[1];
|
|||
|
m2 = imix[2];
|
|||
|
m3 = imix[3];
|
|||
|
sub = isbox;
|
|||
|
} else {
|
|||
|
m0 = mix[0];
|
|||
|
m1 = mix[1];
|
|||
|
m2 = mix[2];
|
|||
|
m3 = mix[3];
|
|||
|
sub = sbox;
|
|||
|
}
|
|||
|
var a, b, c, d, a2, b2, c2;
|
|||
|
a = input[0] ^ w[0];
|
|||
|
b = input[decrypt ? 3 : 1] ^ w[1];
|
|||
|
c = input[2] ^ w[2];
|
|||
|
d = input[decrypt ? 1 : 3] ^ w[3];
|
|||
|
var i = 3;
|
|||
|
|
|||
|
/* In order to share code we follow the encryption algorithm when both
|
|||
|
encrypting and decrypting. To account for the changes required in the
|
|||
|
decryption algorithm, we use different lookup tables when decrypting
|
|||
|
and use a modified key schedule to account for the difference in the
|
|||
|
order of transformations applied when performing rounds. We also get
|
|||
|
key rounds in reverse order (relative to encryption). */
|
|||
|
for(var round = 1; round < Nr; ++round) {
|
|||
|
/* As described above, we'll be using table lookups to perform the
|
|||
|
column mixing. Each column is stored as a word in the state (the
|
|||
|
array 'input' has one column as a word at each index). In order to
|
|||
|
mix a column, we perform these transformations on each row in c,
|
|||
|
which is 1 byte in each word. The new column for c0 is c'0:
|
|||
|
|
|||
|
m0 m1 m2 m3
|
|||
|
r0,c'0 = 2*r0,c0 + 3*r1,c0 + 1*r2,c0 + 1*r3,c0
|
|||
|
r1,c'0 = 1*r0,c0 + 2*r1,c0 + 3*r2,c0 + 1*r3,c0
|
|||
|
r2,c'0 = 1*r0,c0 + 1*r1,c0 + 2*r2,c0 + 3*r3,c0
|
|||
|
r3,c'0 = 3*r0,c0 + 1*r1,c0 + 1*r2,c0 + 2*r3,c0
|
|||
|
|
|||
|
So using mix tables where c0 is a word with r0 being its upper
|
|||
|
8 bits and r3 being its lower 8 bits:
|
|||
|
|
|||
|
m0[c0 >> 24] will yield this word: [2*r0,1*r0,1*r0,3*r0]
|
|||
|
...
|
|||
|
m3[c0 & 255] will yield this word: [1*r3,1*r3,3*r3,2*r3]
|
|||
|
|
|||
|
Therefore to mix the columns in each word in the state we
|
|||
|
do the following (& 255 omitted for brevity):
|
|||
|
c'0,r0 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
|
|||
|
c'0,r1 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
|
|||
|
c'0,r2 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
|
|||
|
c'0,r3 = m0[c0 >> 24] ^ m1[c1 >> 16] ^ m2[c2 >> 8] ^ m3[c3]
|
|||
|
|
|||
|
However, before mixing, the algorithm requires us to perform
|
|||
|
ShiftRows(). The ShiftRows() transformation cyclically shifts the
|
|||
|
last 3 rows of the state over different offsets. The first row
|
|||
|
(r = 0) is not shifted.
|
|||
|
|
|||
|
s'_r,c = s_r,(c + shift(r, Nb) mod Nb
|
|||
|
for 0 < r < 4 and 0 <= c < Nb and
|
|||
|
shift(1, 4) = 1
|
|||
|
shift(2, 4) = 2
|
|||
|
shift(3, 4) = 3.
|
|||
|
|
|||
|
This causes the first byte in r = 1 to be moved to the end of
|
|||
|
the row, the first 2 bytes in r = 2 to be moved to the end of
|
|||
|
the row, the first 3 bytes in r = 3 to be moved to the end of
|
|||
|
the row:
|
|||
|
|
|||
|
r1: [c0 c1 c2 c3] => [c1 c2 c3 c0]
|
|||
|
r2: [c0 c1 c2 c3] [c2 c3 c0 c1]
|
|||
|
r3: [c0 c1 c2 c3] [c3 c0 c1 c2]
|
|||
|
|
|||
|
We can make these substitutions inline with our column mixing to
|
|||
|
generate an updated set of equations to produce each word in the
|
|||
|
state (note the columns have changed positions):
|
|||
|
|
|||
|
c0 c1 c2 c3 => c0 c1 c2 c3
|
|||
|
c0 c1 c2 c3 c1 c2 c3 c0 (cycled 1 byte)
|
|||
|
c0 c1 c2 c3 c2 c3 c0 c1 (cycled 2 bytes)
|
|||
|
c0 c1 c2 c3 c3 c0 c1 c2 (cycled 3 bytes)
|
|||
|
|
|||
|
Therefore:
|
|||
|
|
|||
|
c'0 = 2*r0,c0 + 3*r1,c1 + 1*r2,c2 + 1*r3,c3
|
|||
|
c'0 = 1*r0,c0 + 2*r1,c1 + 3*r2,c2 + 1*r3,c3
|
|||
|
c'0 = 1*r0,c0 + 1*r1,c1 + 2*r2,c2 + 3*r3,c3
|
|||
|
c'0 = 3*r0,c0 + 1*r1,c1 + 1*r2,c2 + 2*r3,c3
|
|||
|
|
|||
|
c'1 = 2*r0,c1 + 3*r1,c2 + 1*r2,c3 + 1*r3,c0
|
|||
|
c'1 = 1*r0,c1 + 2*r1,c2 + 3*r2,c3 + 1*r3,c0
|
|||
|
c'1 = 1*r0,c1 + 1*r1,c2 + 2*r2,c3 + 3*r3,c0
|
|||
|
c'1 = 3*r0,c1 + 1*r1,c2 + 1*r2,c3 + 2*r3,c0
|
|||
|
|
|||
|
... and so forth for c'2 and c'3. The important distinction is
|
|||
|
that the columns are cycling, with c0 being used with the m0
|
|||
|
map when calculating c0, but c1 being used with the m0 map when
|
|||
|
calculating c1 ... and so forth.
|
|||
|
|
|||
|
When performing the inverse we transform the mirror image and
|
|||
|
skip the bottom row, instead of the top one, and move upwards:
|
|||
|
|
|||
|
c3 c2 c1 c0 => c0 c3 c2 c1 (cycled 3 bytes) *same as encryption
|
|||
|
c3 c2 c1 c0 c1 c0 c3 c2 (cycled 2 bytes)
|
|||
|
c3 c2 c1 c0 c2 c1 c0 c3 (cycled 1 byte) *same as encryption
|
|||
|
c3 c2 c1 c0 c3 c2 c1 c0
|
|||
|
|
|||
|
If you compare the resulting matrices for ShiftRows()+MixColumns()
|
|||
|
and for InvShiftRows()+InvMixColumns() the 2nd and 4th columns are
|
|||
|
different (in encrypt mode vs. decrypt mode). So in order to use
|
|||
|
the same code to handle both encryption and decryption, we will
|
|||
|
need to do some mapping.
|
|||
|
|
|||
|
If in encryption mode we let a=c0, b=c1, c=c2, d=c3, and r<N> be
|
|||
|
a row number in the state, then the resulting matrix in encryption
|
|||
|
mode for applying the above transformations would be:
|
|||
|
|
|||
|
r1: a b c d
|
|||
|
r2: b c d a
|
|||
|
r3: c d a b
|
|||
|
r4: d a b c
|
|||
|
|
|||
|
If we did the same in decryption mode we would get:
|
|||
|
|
|||
|
r1: a d c b
|
|||
|
r2: b a d c
|
|||
|
r3: c b a d
|
|||
|
r4: d c b a
|
|||
|
|
|||
|
If instead we swap d and b (set b=c3 and d=c1), then we get:
|
|||
|
|
|||
|
r1: a b c d
|
|||
|
r2: d a b c
|
|||
|
r3: c d a b
|
|||
|
r4: b c d a
|
|||
|
|
|||
|
Now the 1st and 3rd rows are the same as the encryption matrix. All
|
|||
|
we need to do then to make the mapping exactly the same is to swap
|
|||
|
the 2nd and 4th rows when in decryption mode. To do this without
|
|||
|
having to do it on each iteration, we swapped the 2nd and 4th rows
|
|||
|
in the decryption key schedule. We also have to do the swap above
|
|||
|
when we first pull in the input and when we set the final output. */
|
|||
|
a2 =
|
|||
|
m0[a >>> 24] ^
|
|||
|
m1[b >>> 16 & 255] ^
|
|||
|
m2[c >>> 8 & 255] ^
|
|||
|
m3[d & 255] ^ w[++i];
|
|||
|
b2 =
|
|||
|
m0[b >>> 24] ^
|
|||
|
m1[c >>> 16 & 255] ^
|
|||
|
m2[d >>> 8 & 255] ^
|
|||
|
m3[a & 255] ^ w[++i];
|
|||
|
c2 =
|
|||
|
m0[c >>> 24] ^
|
|||
|
m1[d >>> 16 & 255] ^
|
|||
|
m2[a >>> 8 & 255] ^
|
|||
|
m3[b & 255] ^ w[++i];
|
|||
|
d =
|
|||
|
m0[d >>> 24] ^
|
|||
|
m1[a >>> 16 & 255] ^
|
|||
|
m2[b >>> 8 & 255] ^
|
|||
|
m3[c & 255] ^ w[++i];
|
|||
|
a = a2;
|
|||
|
b = b2;
|
|||
|
c = c2;
|
|||
|
}
|
|||
|
|
|||
|
/*
|
|||
|
Encrypt:
|
|||
|
SubBytes(state)
|
|||
|
ShiftRows(state)
|
|||
|
AddRoundKey(state, w[Nr*Nb, (Nr+1)*Nb-1])
|
|||
|
|
|||
|
Decrypt:
|
|||
|
InvShiftRows(state)
|
|||
|
InvSubBytes(state)
|
|||
|
AddRoundKey(state, w[0, Nb-1])
|
|||
|
*/
|
|||
|
// Note: rows are shifted inline
|
|||
|
output[0] =
|
|||
|
(sub[a >>> 24] << 24) ^
|
|||
|
(sub[b >>> 16 & 255] << 16) ^
|
|||
|
(sub[c >>> 8 & 255] << 8) ^
|
|||
|
(sub[d & 255]) ^ w[++i];
|
|||
|
output[decrypt ? 3 : 1] =
|
|||
|
(sub[b >>> 24] << 24) ^
|
|||
|
(sub[c >>> 16 & 255] << 16) ^
|
|||
|
(sub[d >>> 8 & 255] << 8) ^
|
|||
|
(sub[a & 255]) ^ w[++i];
|
|||
|
output[2] =
|
|||
|
(sub[c >>> 24] << 24) ^
|
|||
|
(sub[d >>> 16 & 255] << 16) ^
|
|||
|
(sub[a >>> 8 & 255] << 8) ^
|
|||
|
(sub[b & 255]) ^ w[++i];
|
|||
|
output[decrypt ? 1 : 3] =
|
|||
|
(sub[d >>> 24] << 24) ^
|
|||
|
(sub[a >>> 16 & 255] << 16) ^
|
|||
|
(sub[b >>> 8 & 255] << 8) ^
|
|||
|
(sub[c & 255]) ^ w[++i];
|
|||
|
}
|
|||
|
|
|||
|
/**
|
|||
|
* Deprecated. Instead, use:
|
|||
|
*
|
|||
|
* forge.cipher.createCipher('AES-<mode>', key);
|
|||
|
* forge.cipher.createDecipher('AES-<mode>', key);
|
|||
|
*
|
|||
|
* Creates a deprecated AES cipher object. This object's mode will default to
|
|||
|
* CBC (cipher-block-chaining).
|
|||
|
*
|
|||
|
* The key and iv may be given as a string of bytes, an array of bytes, a
|
|||
|
* byte buffer, or an array of 32-bit words.
|
|||
|
*
|
|||
|
* @param options the options to use.
|
|||
|
* key the symmetric key to use.
|
|||
|
* output the buffer to write to.
|
|||
|
* decrypt true for decryption, false for encryption.
|
|||
|
* mode the cipher mode to use (default: 'CBC').
|
|||
|
*
|
|||
|
* @return the cipher.
|
|||
|
*/
|
|||
|
function _createCipher(options) {
|
|||
|
options = options || {};
|
|||
|
var mode = (options.mode || 'CBC').toUpperCase();
|
|||
|
var algorithm = 'AES-' + mode;
|
|||
|
|
|||
|
var cipher;
|
|||
|
if(options.decrypt) {
|
|||
|
cipher = forge.cipher.createDecipher(algorithm, options.key);
|
|||
|
} else {
|
|||
|
cipher = forge.cipher.createCipher(algorithm, options.key);
|
|||
|
}
|
|||
|
|
|||
|
// backwards compatible start API
|
|||
|
var start = cipher.start;
|
|||
|
cipher.start = function(iv, options) {
|
|||
|
// backwards compatibility: support second arg as output buffer
|
|||
|
var output = null;
|
|||
|
if(options instanceof forge.util.ByteBuffer) {
|
|||
|
output = options;
|
|||
|
options = {};
|
|||
|
}
|
|||
|
options = options || {};
|
|||
|
options.output = output;
|
|||
|
options.iv = iv;
|
|||
|
start.call(cipher, options);
|
|||
|
};
|
|||
|
|
|||
|
return cipher;
|
|||
|
}
|