tra-analysis/analysis-master/tra_analysis/NaiveBayes.py

64 lines
2.5 KiB
Python
Raw Normal View History

# Titan Robotics Team 2022: NaiveBayes submodule
# Written by Arthur Lu
# Notes:
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
# setup:
__version__ = "1.0.0"
__changelog__ = """changelog:
1.0.0:
- ported analysis.NaiveBayes() here
- removed classness
"""
__author__ = (
"Arthur Lu <learthurgo@gmail.com>",
)
__all__ = [
tests: New unit tests for submoduling (#66) * feat: created kivy gui boilerplate * migrated docker base image to debian Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * migrated to ubuntu Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * fixed issues Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * fix: docker build? * fix: use ubuntu bionic * fix: get kivy installed * @ltcptgeneral can't spell * optim dockerfile for not installing unused packages * install basic stuff while building the container * use prebuilt image for development * install pylint on base image * rename and use new kivy * tests: added tests for Array and CorrelationTest Both are not working due to errors * fix: Array no longer has *args and CorrelationTest functions no longer have self in the arguments * use new thing * use 20.04 base * symlink pip3 to pip * use pip instead of pip3 * tra_analysis v 2.1.0-alpha.2 SVM v 1.0.1 added unvalidated SVM unit tests Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * fixed version number Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * tests: added tests for ClassificationMetric * partially fixed and commented out svm unit tests * fixed some SVM unit tests * added installing pytest to devcontainer.json * fix: small fixes to KNN Namely, removing self from parameters and passing correct arguments to KNeighborsClassifier constructor * fix, test: Added tests for KNN and NaiveBayes. Also made some small fixes in KNN, NaiveBayes, and RegressionMetric * test: finished unit tests except for StatisticalTest Also made various small fixes and style changes * StatisticalTest v 1.0.1 * fixed RegressionMetric unit test temporarily disabled CorrelationTest unit tests * tra_analysis v 2.1.0-alpha.3 * readded __all__ * fix: floating point issues in unit tests for CorrelationTest Co-authored-by: AGawde05 <agawde05@gmail.com> Co-authored-by: ltcptgeneral <learthurgo@gmail.com> Co-authored-by: Dev Singh <dev@devksingh.com> Co-authored-by: jzpan1 <panzhenyu2014@gmail.com>
2021-01-27 03:46:29 +00:00
'gaussian',
'multinomial'
'bernoulli',
'complement'
]
import sklearn
from sklearn import model_selection, naive_bayes
from . import ClassificationMetric, RegressionMetric
tests: New unit tests for submoduling (#66) * feat: created kivy gui boilerplate * migrated docker base image to debian Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * migrated to ubuntu Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * fixed issues Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * fix: docker build? * fix: use ubuntu bionic * fix: get kivy installed * @ltcptgeneral can't spell * optim dockerfile for not installing unused packages * install basic stuff while building the container * use prebuilt image for development * install pylint on base image * rename and use new kivy * tests: added tests for Array and CorrelationTest Both are not working due to errors * fix: Array no longer has *args and CorrelationTest functions no longer have self in the arguments * use new thing * use 20.04 base * symlink pip3 to pip * use pip instead of pip3 * tra_analysis v 2.1.0-alpha.2 SVM v 1.0.1 added unvalidated SVM unit tests Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * fixed version number Signed-off-by: ltcptgeneral <learthurgo@gmail.com> * tests: added tests for ClassificationMetric * partially fixed and commented out svm unit tests * fixed some SVM unit tests * added installing pytest to devcontainer.json * fix: small fixes to KNN Namely, removing self from parameters and passing correct arguments to KNeighborsClassifier constructor * fix, test: Added tests for KNN and NaiveBayes. Also made some small fixes in KNN, NaiveBayes, and RegressionMetric * test: finished unit tests except for StatisticalTest Also made various small fixes and style changes * StatisticalTest v 1.0.1 * fixed RegressionMetric unit test temporarily disabled CorrelationTest unit tests * tra_analysis v 2.1.0-alpha.3 * readded __all__ * fix: floating point issues in unit tests for CorrelationTest Co-authored-by: AGawde05 <agawde05@gmail.com> Co-authored-by: ltcptgeneral <learthurgo@gmail.com> Co-authored-by: Dev Singh <dev@devksingh.com> Co-authored-by: jzpan1 <panzhenyu2014@gmail.com>
2021-01-27 03:46:29 +00:00
def gaussian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def multinomial(data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def bernoulli(data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)
def complement(data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
model.fit(data_train, labels_train)
predictions = model.predict(data_test)
return model, ClassificationMetric(predictions, labels_test)