mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-16 18:15:54 +00:00
200 lines
5.6 KiB
Python
200 lines
5.6 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
trueskill.factorgraph
|
||
|
~~~~~~~~~~~~~~~~~~~~~
|
||
|
|
||
|
This module contains nodes for the factor graph of TrueSkill algorithm.
|
||
|
|
||
|
:copyright: (c) 2012-2016 by Heungsub Lee.
|
||
|
:license: BSD, see LICENSE for more details.
|
||
|
|
||
|
"""
|
||
|
from __future__ import absolute_import
|
||
|
|
||
|
import math
|
||
|
|
||
|
from six.moves import zip
|
||
|
|
||
|
from .mathematics import Gaussian, inf
|
||
|
|
||
|
|
||
|
__all__ = ['Variable', 'PriorFactor', 'LikelihoodFactor', 'SumFactor',
|
||
|
'TruncateFactor']
|
||
|
|
||
|
|
||
|
class Node(object):
|
||
|
|
||
|
pass
|
||
|
|
||
|
|
||
|
class Variable(Node, Gaussian):
|
||
|
|
||
|
def __init__(self):
|
||
|
self.messages = {}
|
||
|
super(Variable, self).__init__()
|
||
|
|
||
|
def set(self, val):
|
||
|
delta = self.delta(val)
|
||
|
self.pi, self.tau = val.pi, val.tau
|
||
|
return delta
|
||
|
|
||
|
def delta(self, other):
|
||
|
pi_delta = abs(self.pi - other.pi)
|
||
|
if pi_delta == inf:
|
||
|
return 0.
|
||
|
return max(abs(self.tau - other.tau), math.sqrt(pi_delta))
|
||
|
|
||
|
def update_message(self, factor, pi=0, tau=0, message=None):
|
||
|
message = message or Gaussian(pi=pi, tau=tau)
|
||
|
old_message, self[factor] = self[factor], message
|
||
|
return self.set(self / old_message * message)
|
||
|
|
||
|
def update_value(self, factor, pi=0, tau=0, value=None):
|
||
|
value = value or Gaussian(pi=pi, tau=tau)
|
||
|
old_message = self[factor]
|
||
|
self[factor] = value * old_message / self
|
||
|
return self.set(value)
|
||
|
|
||
|
def __getitem__(self, factor):
|
||
|
return self.messages[factor]
|
||
|
|
||
|
def __setitem__(self, factor, message):
|
||
|
self.messages[factor] = message
|
||
|
|
||
|
def __repr__(self):
|
||
|
args = (type(self).__name__, super(Variable, self).__repr__(),
|
||
|
len(self.messages), '' if len(self.messages) == 1 else 's')
|
||
|
return '<%s %s with %d connection%s>' % args
|
||
|
|
||
|
|
||
|
class Factor(Node):
|
||
|
|
||
|
def __init__(self, variables):
|
||
|
self.vars = variables
|
||
|
for var in variables:
|
||
|
var[self] = Gaussian()
|
||
|
|
||
|
def down(self):
|
||
|
return 0
|
||
|
|
||
|
def up(self):
|
||
|
return 0
|
||
|
|
||
|
@property
|
||
|
def var(self):
|
||
|
assert len(self.vars) == 1
|
||
|
return self.vars[0]
|
||
|
|
||
|
def __repr__(self):
|
||
|
args = (type(self).__name__, len(self.vars),
|
||
|
'' if len(self.vars) == 1 else 's')
|
||
|
return '<%s with %d connection%s>' % args
|
||
|
|
||
|
|
||
|
class PriorFactor(Factor):
|
||
|
|
||
|
def __init__(self, var, val, dynamic=0):
|
||
|
super(PriorFactor, self).__init__([var])
|
||
|
self.val = val
|
||
|
self.dynamic = dynamic
|
||
|
|
||
|
def down(self):
|
||
|
sigma = math.sqrt(self.val.sigma ** 2 + self.dynamic ** 2)
|
||
|
value = Gaussian(self.val.mu, sigma)
|
||
|
return self.var.update_value(self, value=value)
|
||
|
|
||
|
|
||
|
class LikelihoodFactor(Factor):
|
||
|
|
||
|
def __init__(self, mean_var, value_var, variance):
|
||
|
super(LikelihoodFactor, self).__init__([mean_var, value_var])
|
||
|
self.mean = mean_var
|
||
|
self.value = value_var
|
||
|
self.variance = variance
|
||
|
|
||
|
def calc_a(self, var):
|
||
|
return 1. / (1. + self.variance * var.pi)
|
||
|
|
||
|
def down(self):
|
||
|
# update value.
|
||
|
msg = self.mean / self.mean[self]
|
||
|
a = self.calc_a(msg)
|
||
|
return self.value.update_message(self, a * msg.pi, a * msg.tau)
|
||
|
|
||
|
def up(self):
|
||
|
# update mean.
|
||
|
msg = self.value / self.value[self]
|
||
|
a = self.calc_a(msg)
|
||
|
return self.mean.update_message(self, a * msg.pi, a * msg.tau)
|
||
|
|
||
|
|
||
|
class SumFactor(Factor):
|
||
|
|
||
|
def __init__(self, sum_var, term_vars, coeffs):
|
||
|
super(SumFactor, self).__init__([sum_var] + term_vars)
|
||
|
self.sum = sum_var
|
||
|
self.terms = term_vars
|
||
|
self.coeffs = coeffs
|
||
|
|
||
|
def down(self):
|
||
|
vals = self.terms
|
||
|
msgs = [var[self] for var in vals]
|
||
|
return self.update(self.sum, vals, msgs, self.coeffs)
|
||
|
|
||
|
def up(self, index=0):
|
||
|
coeff = self.coeffs[index]
|
||
|
coeffs = []
|
||
|
for x, c in enumerate(self.coeffs):
|
||
|
try:
|
||
|
if x == index:
|
||
|
coeffs.append(1. / coeff)
|
||
|
else:
|
||
|
coeffs.append(-c / coeff)
|
||
|
except ZeroDivisionError:
|
||
|
coeffs.append(0.)
|
||
|
vals = self.terms[:]
|
||
|
vals[index] = self.sum
|
||
|
msgs = [var[self] for var in vals]
|
||
|
return self.update(self.terms[index], vals, msgs, coeffs)
|
||
|
|
||
|
def update(self, var, vals, msgs, coeffs):
|
||
|
pi_inv = 0
|
||
|
mu = 0
|
||
|
for val, msg, coeff in zip(vals, msgs, coeffs):
|
||
|
div = val / msg
|
||
|
mu += coeff * div.mu
|
||
|
if pi_inv == inf:
|
||
|
continue
|
||
|
try:
|
||
|
# numpy.float64 handles floating-point error by different way.
|
||
|
# For example, it can just warn RuntimeWarning on n/0 problem
|
||
|
# instead of throwing ZeroDivisionError. So div.pi, the
|
||
|
# denominator has to be a built-in float.
|
||
|
pi_inv += coeff ** 2 / float(div.pi)
|
||
|
except ZeroDivisionError:
|
||
|
pi_inv = inf
|
||
|
pi = 1. / pi_inv
|
||
|
tau = pi * mu
|
||
|
return var.update_message(self, pi, tau)
|
||
|
|
||
|
|
||
|
class TruncateFactor(Factor):
|
||
|
|
||
|
def __init__(self, var, v_func, w_func, draw_margin):
|
||
|
super(TruncateFactor, self).__init__([var])
|
||
|
self.v_func = v_func
|
||
|
self.w_func = w_func
|
||
|
self.draw_margin = draw_margin
|
||
|
|
||
|
def up(self):
|
||
|
val = self.var
|
||
|
msg = self.var[self]
|
||
|
div = val / msg
|
||
|
sqrt_pi = math.sqrt(div.pi)
|
||
|
args = (div.tau / sqrt_pi, self.draw_margin * sqrt_pi)
|
||
|
v = self.v_func(*args)
|
||
|
w = self.w_func(*args)
|
||
|
denom = (1. - w)
|
||
|
pi, tau = div.pi / denom, (div.tau + sqrt_pi * v) / denom
|
||
|
return val.update_value(self, pi, tau)
|