mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-04 04:51:22 +00:00
169 lines
4.7 KiB
JavaScript
169 lines
4.7 KiB
JavaScript
|
/**
|
||
|
* RSA Key Generation Worker.
|
||
|
*
|
||
|
* @author Dave Longley
|
||
|
*
|
||
|
* Copyright (c) 2013 Digital Bazaar, Inc.
|
||
|
*/
|
||
|
// worker is built using CommonJS syntax to include all code in one worker file
|
||
|
//importScripts('jsbn.js');
|
||
|
var forge = require('./forge');
|
||
|
require('./jsbn');
|
||
|
|
||
|
// prime constants
|
||
|
var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
|
||
|
var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1];
|
||
|
|
||
|
var BigInteger = forge.jsbn.BigInteger;
|
||
|
var BIG_TWO = new BigInteger(null);
|
||
|
BIG_TWO.fromInt(2);
|
||
|
|
||
|
self.addEventListener('message', function(e) {
|
||
|
var result = findPrime(e.data);
|
||
|
self.postMessage(result);
|
||
|
});
|
||
|
|
||
|
// start receiving ranges to check
|
||
|
self.postMessage({found: false});
|
||
|
|
||
|
// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
|
||
|
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
|
||
|
|
||
|
function findPrime(data) {
|
||
|
// TODO: abstract based on data.algorithm (PRIMEINC vs. others)
|
||
|
|
||
|
// create BigInteger from given random bytes
|
||
|
var num = new BigInteger(data.hex, 16);
|
||
|
|
||
|
/* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
|
||
|
number we are given is always aligned at 30k + 1. Each time the number is
|
||
|
determined not to be prime we add to get to the next 'i', eg: if the number
|
||
|
was at 30k + 1 we add 6. */
|
||
|
var deltaIdx = 0;
|
||
|
|
||
|
// find nearest prime
|
||
|
var workLoad = data.workLoad;
|
||
|
for(var i = 0; i < workLoad; ++i) {
|
||
|
// do primality test
|
||
|
if(isProbablePrime(num)) {
|
||
|
return {found: true, prime: num.toString(16)};
|
||
|
}
|
||
|
// get next potential prime
|
||
|
num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
|
||
|
}
|
||
|
|
||
|
return {found: false};
|
||
|
}
|
||
|
|
||
|
function isProbablePrime(n) {
|
||
|
// divide by low primes, ignore even checks, etc (n alread aligned properly)
|
||
|
var i = 1;
|
||
|
while(i < LOW_PRIMES.length) {
|
||
|
var m = LOW_PRIMES[i];
|
||
|
var j = i + 1;
|
||
|
while(j < LOW_PRIMES.length && m < LP_LIMIT) {
|
||
|
m *= LOW_PRIMES[j++];
|
||
|
}
|
||
|
m = n.modInt(m);
|
||
|
while(i < j) {
|
||
|
if(m % LOW_PRIMES[i++] === 0) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return runMillerRabin(n);
|
||
|
}
|
||
|
|
||
|
// HAC 4.24, Miller-Rabin
|
||
|
function runMillerRabin(n) {
|
||
|
// n1 = n - 1
|
||
|
var n1 = n.subtract(BigInteger.ONE);
|
||
|
|
||
|
// get s and d such that n1 = 2^s * d
|
||
|
var s = n1.getLowestSetBit();
|
||
|
if(s <= 0) {
|
||
|
return false;
|
||
|
}
|
||
|
var d = n1.shiftRight(s);
|
||
|
|
||
|
var k = _getMillerRabinTests(n.bitLength());
|
||
|
var prng = getPrng();
|
||
|
var a;
|
||
|
for(var i = 0; i < k; ++i) {
|
||
|
// select witness 'a' at random from between 1 and n - 1
|
||
|
do {
|
||
|
a = new BigInteger(n.bitLength(), prng);
|
||
|
} while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0);
|
||
|
|
||
|
/* See if 'a' is a composite witness. */
|
||
|
|
||
|
// x = a^d mod n
|
||
|
var x = a.modPow(d, n);
|
||
|
|
||
|
// probably prime
|
||
|
if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
var j = s;
|
||
|
while(--j) {
|
||
|
// x = x^2 mod a
|
||
|
x = x.modPowInt(2, n);
|
||
|
|
||
|
// 'n' is composite because no previous x == -1 mod n
|
||
|
if(x.compareTo(BigInteger.ONE) === 0) {
|
||
|
return false;
|
||
|
}
|
||
|
// x == -1 mod n, so probably prime
|
||
|
if(x.compareTo(n1) === 0) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime
|
||
|
if(j === 0) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// get pseudo random number generator
|
||
|
function getPrng() {
|
||
|
// create prng with api that matches BigInteger secure random
|
||
|
return {
|
||
|
// x is an array to fill with bytes
|
||
|
nextBytes: function(x) {
|
||
|
for(var i = 0; i < x.length; ++i) {
|
||
|
x[i] = Math.floor(Math.random() * 0xFF);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the required number of Miller-Rabin tests to generate a
|
||
|
* prime with an error probability of (1/2)^80.
|
||
|
*
|
||
|
* See Handbook of Applied Cryptography Chapter 4, Table 4.4.
|
||
|
*
|
||
|
* @param bits the bit size.
|
||
|
*
|
||
|
* @return the required number of iterations.
|
||
|
*/
|
||
|
function _getMillerRabinTests(bits) {
|
||
|
if(bits <= 100) return 27;
|
||
|
if(bits <= 150) return 18;
|
||
|
if(bits <= 200) return 15;
|
||
|
if(bits <= 250) return 12;
|
||
|
if(bits <= 300) return 9;
|
||
|
if(bits <= 350) return 8;
|
||
|
if(bits <= 400) return 7;
|
||
|
if(bits <= 500) return 6;
|
||
|
if(bits <= 600) return 5;
|
||
|
if(bits <= 800) return 4;
|
||
|
if(bits <= 1250) return 3;
|
||
|
return 2;
|
||
|
}
|