mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-11-14 15:16:18 +00:00
42 lines
1000 B
Python
42 lines
1000 B
Python
|
# Titan Robotics Team 2022: RegressionMetric submodule
|
||
|
# Written by Arthur Lu
|
||
|
# Notes:
|
||
|
# this should be imported as a python module using 'from tra_analysis import RegressionMetric'
|
||
|
# setup:
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
|
||
|
__changelog__ = """changelog:
|
||
|
1.0.0:
|
||
|
- ported analysis.RegressionMetric() here
|
||
|
"""
|
||
|
|
||
|
__author__ = (
|
||
|
"Arthur Lu <learthurgo@gmail.com>",
|
||
|
)
|
||
|
|
||
|
__all__ = [
|
||
|
'RegressionMetric'
|
||
|
]
|
||
|
|
||
|
import numpy as np
|
||
|
import sklearn
|
||
|
from sklearn import metrics
|
||
|
|
||
|
class RegressionMetric():
|
||
|
|
||
|
def __new__(cls, predictions, targets):
|
||
|
|
||
|
return cls.r_squared(cls, predictions, targets), cls.mse(cls, predictions, targets), cls.rms(cls, predictions, targets)
|
||
|
|
||
|
def r_squared(self, predictions, targets): # assumes equal size inputs
|
||
|
|
||
|
return sklearn.metrics.r2_score(targets, predictions)
|
||
|
|
||
|
def mse(self, predictions, targets):
|
||
|
|
||
|
return sklearn.metrics.mean_squared_error(targets, predictions)
|
||
|
|
||
|
def rms(self, predictions, targets):
|
||
|
|
||
|
return np.sqrt(sklearn.metrics.mean_squared_error(targets, predictions))
|