mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2024-12-29 10:19:11 +00:00
59 lines
2.4 KiB
Python
59 lines
2.4 KiB
Python
|
# Titan Robotics Team 2022: NaiveBayes submodule
|
||
|
# Written by Arthur Lu
|
||
|
# Notes:
|
||
|
# this should be imported as a python module using 'from tra_analysis import NaiveBayes'
|
||
|
# setup:
|
||
|
|
||
|
__version__ = "1.0.0"
|
||
|
|
||
|
__changelog__ = """changelog:
|
||
|
1.0.0:
|
||
|
- ported analysis.NaiveBayes() here
|
||
|
"""
|
||
|
|
||
|
__author__ = (
|
||
|
"Arthur Lu <learthurgo@gmail.com>",
|
||
|
)
|
||
|
|
||
|
__all__ = [
|
||
|
]
|
||
|
|
||
|
import sklearn
|
||
|
from sklearn import model_selection, naive_bayes
|
||
|
from . import ClassificationMetric, RegressionMetric
|
||
|
|
||
|
def guassian(data, labels, test_size = 0.3, priors = None, var_smoothing = 1e-09):
|
||
|
|
||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
|
model = sklearn.naive_bayes.GaussianNB(priors = priors, var_smoothing = var_smoothing)
|
||
|
model.fit(data_train, labels_train)
|
||
|
predictions = model.predict(data_test)
|
||
|
|
||
|
return model, ClassificationMetric(predictions, labels_test)
|
||
|
|
||
|
def multinomial(data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None):
|
||
|
|
||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
|
model = sklearn.naive_bayes.MultinomialNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior)
|
||
|
model.fit(data_train, labels_train)
|
||
|
predictions = model.predict(data_test)
|
||
|
|
||
|
return model, ClassificationMetric(predictions, labels_test)
|
||
|
|
||
|
def bernoulli(data, labels, test_size = 0.3, alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None):
|
||
|
|
||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
|
model = sklearn.naive_bayes.BernoulliNB(alpha = alpha, binarize = binarize, fit_prior = fit_prior, class_prior = class_prior)
|
||
|
model.fit(data_train, labels_train)
|
||
|
predictions = model.predict(data_test)
|
||
|
|
||
|
return model, ClassificationMetric(predictions, labels_test)
|
||
|
|
||
|
def complement(data, labels, test_size = 0.3, alpha=1.0, fit_prior=True, class_prior=None, norm=False):
|
||
|
|
||
|
data_train, data_test, labels_train, labels_test = sklearn.model_selection.train_test_split(data, labels, test_size=test_size, random_state=1)
|
||
|
model = sklearn.naive_bayes.ComplementNB(alpha = alpha, fit_prior = fit_prior, class_prior = class_prior, norm = norm)
|
||
|
model.fit(data_train, labels_train)
|
||
|
predictions = model.predict(data_test)
|
||
|
|
||
|
return model, ClassificationMetric(predictions, labels_test)
|