mirror of
https://github.com/titanscouting/tra-analysis.git
synced 2025-01-15 01:25:55 +00:00
122 lines
3.4 KiB
Python
122 lines
3.4 KiB
Python
|
# Titan Robotics Team 2022: ML Module
|
||
|
# Written by Arthur Lu & Jacob Levine
|
||
|
# Notes:
|
||
|
# this should be imported as a python module using 'import titanlearn'
|
||
|
# this should be included in the local directory or environment variable
|
||
|
# this module is optimized for multhreaded computing
|
||
|
# this module learns from its mistakes far faster than 2022's captains
|
||
|
# setup:
|
||
|
|
||
|
__version__ = "2.0.1.001"
|
||
|
|
||
|
#changelog should be viewed using print(analysis.__changelog__)
|
||
|
__changelog__ = """changelog:
|
||
|
2.0.1.001:
|
||
|
- removed matplotlib import
|
||
|
- removed graphloss()
|
||
|
2.0.1.000:
|
||
|
- added net, dataset, dataloader, and stdtrain template definitions
|
||
|
- added graphloss function
|
||
|
2.0.0.001:
|
||
|
- added clear functions
|
||
|
2.0.0.000:
|
||
|
- complete rewrite planned
|
||
|
- depreciated 1.0.0.xxx versions
|
||
|
- added simple training loop
|
||
|
1.0.0.xxx:
|
||
|
-added generation of ANNS, basic SGD training
|
||
|
"""
|
||
|
|
||
|
__author__ = (
|
||
|
"Arthur Lu <arthurlu@ttic.edu>,"
|
||
|
"Jacob Levine <jlevine@ttic.edu>,"
|
||
|
)
|
||
|
|
||
|
__all__ = [
|
||
|
'clear',
|
||
|
'net',
|
||
|
'dataset',
|
||
|
'dataloader',
|
||
|
'train',
|
||
|
'stdtrainer',
|
||
|
]
|
||
|
|
||
|
import torch
|
||
|
from os import system, name
|
||
|
import numpy as np
|
||
|
|
||
|
def clear():
|
||
|
if name == 'nt':
|
||
|
_ = system('cls')
|
||
|
else:
|
||
|
_ = system('clear')
|
||
|
|
||
|
class net(torch.nn.Module): #template for standard neural net
|
||
|
def __init__(self):
|
||
|
super(Net, self).__init__()
|
||
|
|
||
|
def forward(self, input):
|
||
|
pass
|
||
|
|
||
|
class dataset(torch.utils.data.Dataset): #template for standard dataset
|
||
|
|
||
|
def __init__(self):
|
||
|
super(torch.utils.data.Dataset).__init__()
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
pass
|
||
|
|
||
|
def __len__(self):
|
||
|
pass
|
||
|
|
||
|
def dataloader(dataset, batch_size, num_workers, shuffle = True):
|
||
|
|
||
|
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
||
|
|
||
|
def train(device, net, epochs, trainloader, optimizer, criterion): #expects standard dataloader, whch returns (inputs, labels)
|
||
|
|
||
|
dataset_len = trainloader.dataset.__len__()
|
||
|
iter_count = 0
|
||
|
running_loss = 0
|
||
|
running_loss_list = []
|
||
|
|
||
|
for epoch in range(epochs): # loop over the dataset multiple times
|
||
|
|
||
|
for i, data in enumerate(trainloader, 0):
|
||
|
|
||
|
inputs = data[0].to(device)
|
||
|
labels = data[1].to(device)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
outputs = net(inputs)
|
||
|
loss = criterion(outputs, labels.to(torch.float))
|
||
|
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
# monitoring steps below
|
||
|
|
||
|
iter_count += 1
|
||
|
running_loss += loss.item()
|
||
|
running_loss_list.append(running_loss)
|
||
|
clear()
|
||
|
|
||
|
print("training on: " + device)
|
||
|
print("iteration: " + str(i) + "/" + str(int(dataset_len / trainloader.batch_size)) + " | " + "epoch: " + str(epoch) + "/" + str(epochs))
|
||
|
print("current batch loss: " + str(loss.item))
|
||
|
print("running loss: " + str(running_loss / iter_count))
|
||
|
|
||
|
return net, running_loss_list
|
||
|
print("finished training")
|
||
|
|
||
|
def stdtrainer(net, criterion, optimizer, dataloader, epochs, batch_size):
|
||
|
|
||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||
|
|
||
|
net = net.to(device)
|
||
|
criterion = criterion.to(device)
|
||
|
optimizer = optimizer.to(device)
|
||
|
trainloader = dataloader
|
||
|
|
||
|
return train(device, net, epochs, trainloader, optimizer, criterion)
|