2020-09-25 02:06:30 +00:00
|
|
|
# Titan Robotics Team 2022: CPU fitting models
|
|
|
|
# Written by Dev Singh
|
|
|
|
# Notes:
|
|
|
|
# this module is cuda-optimized (as appropriate) and vectorized (except for one small part)
|
|
|
|
# setup:
|
|
|
|
|
2021-04-29 00:33:50 +00:00
|
|
|
__version__ = "0.0.2"
|
2020-09-25 02:06:30 +00:00
|
|
|
|
|
|
|
# changelog should be viewed using print(analysis.fits.__changelog__)
|
|
|
|
__changelog__ = """changelog:
|
2021-04-29 00:33:50 +00:00
|
|
|
0.0.2:
|
|
|
|
- renamed module to Fit
|
2020-09-25 02:06:30 +00:00
|
|
|
0.0.1:
|
|
|
|
- initial release, add circle fitting with LSC
|
|
|
|
"""
|
|
|
|
|
|
|
|
__author__ = (
|
|
|
|
"Dev Singh <dev@devksingh.com>"
|
|
|
|
)
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'CircleFit'
|
|
|
|
]
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
class CircleFit:
|
|
|
|
"""Class to fit data to a circle using the Least Square Circle (LSC) method"""
|
|
|
|
# For more information on the LSC method, see:
|
|
|
|
# http://www.dtcenter.org/sites/default/files/community-code/met/docs/write-ups/circle_fit.pdf
|
|
|
|
def __init__(self, x, y, xy=None):
|
|
|
|
self.ournp = np #todo: implement cupy correctly
|
|
|
|
if type(x) == list:
|
|
|
|
x = np.array(x)
|
|
|
|
if type(y) == list:
|
|
|
|
y = np.array(y)
|
|
|
|
if type(xy) == list:
|
|
|
|
xy = np.array(xy)
|
|
|
|
if xy != None:
|
|
|
|
self.coords = xy
|
|
|
|
else:
|
|
|
|
# following block combines x and y into one array if not already done
|
|
|
|
self.coords = self.ournp.vstack(([x.T], [y.T])).T
|
|
|
|
def calc_R(x, y, xc, yc):
|
|
|
|
"""Returns distance between center and point"""
|
|
|
|
return self.ournp.sqrt((x-xc)**2 + (y-yc)**2)
|
|
|
|
def f(c, x, y):
|
|
|
|
"""Returns distance between point and circle at c"""
|
|
|
|
Ri = calc_R(x, y, *c)
|
|
|
|
return Ri - Ri.mean()
|
|
|
|
def LSC(self):
|
|
|
|
"""Fits given data to a circle and returns the center, radius, and variance"""
|
|
|
|
x = self.coords[:, 0]
|
|
|
|
y = self.coords[:, 1]
|
|
|
|
# guessing at a center
|
|
|
|
x_m = self.ournp.mean(x)
|
|
|
|
y_m = self.ournp.mean(y)
|
|
|
|
|
|
|
|
# calculation of the reduced coordinates
|
|
|
|
u = x - x_m
|
|
|
|
v = y - y_m
|
|
|
|
|
|
|
|
# linear system defining the center (uc, vc) in reduced coordinates:
|
|
|
|
# Suu * uc + Suv * vc = (Suuu + Suvv)/2
|
|
|
|
# Suv * uc + Svv * vc = (Suuv + Svvv)/2
|
|
|
|
Suv = self.ournp.sum(u*v)
|
|
|
|
Suu = self.ournp.sum(u**2)
|
|
|
|
Svv = self.ournp.sum(v**2)
|
|
|
|
Suuv = self.ournp.sum(u**2 * v)
|
|
|
|
Suvv = self.ournp.sum(u * v**2)
|
|
|
|
Suuu = self.ournp.sum(u**3)
|
|
|
|
Svvv = self.ournp.sum(v**3)
|
|
|
|
|
|
|
|
# Solving the linear system
|
|
|
|
A = self.ournp.array([ [ Suu, Suv ], [Suv, Svv]])
|
|
|
|
B = self.ournp.array([ Suuu + Suvv, Svvv + Suuv ])/2.0
|
|
|
|
uc, vc = self.ournp.linalg.solve(A, B)
|
|
|
|
|
|
|
|
xc_1 = x_m + uc
|
|
|
|
yc_1 = y_m + vc
|
|
|
|
|
|
|
|
# Calculate the distances from center (xc_1, yc_1)
|
|
|
|
Ri_1 = self.ournp.sqrt((x-xc_1)**2 + (y-yc_1)**2)
|
|
|
|
R_1 = self.ournp.mean(Ri_1)
|
|
|
|
# calculate residual error
|
|
|
|
residu_1 = self.ournp.sum((Ri_1-R_1)**2)
|
|
|
|
return (xc_1, yc_1, R_1, residu_1)
|