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Abstract

Large language models (LLMs) have a high potential for processing
highly structured text inputs to generate grammar representations.
Leveraging LLMs in generating grammar would reduce the time
spent and effort required to create a grammar for fuzzing, unit
testing, and input validation. In this project, we create a system that
handles grammar creation using automated feedback and human
feedback. We develop a pipeline for assisted generation of grammar
on unseen domains. We show the potential for LLMs to generate
complex grammars which can be used for many software testing
applications and reflect on its limitations with complex unseen
domains.

1 Introduction

Generating grammar can be a complex and time-consuming task.
For complex domains, grammars may have many interacting rules
which may be recursive. Additionally, evaluating said grammar
for correctness can be taxing as well, and optimizing grammar
according to a metric can be an opaque task. There is also the
underlying question of what metrics are relevant.

In this paper, we attempt to use LLMs to automate the process of
grammar generation. LLMs have shown impressive text generation
and reasoning capabilities for downstream tasks [8]. We attempt to
leverage these capabilities for grammar generation, relying on user
feedback to guide said generation in the right direction. For example,
letting the user tell the LLM to adjust the grammar it generated to
have fewer non-terminal nodes. Additionally, we explore several
different types of metrics by which grammar can be evaluated and
discuss how our system responds to them.

Since the focus of this project is to explore an LLM’s ability to
generate grammar, we do not want it to rely on any grammar it
may have seen before. If it was asked to generate a grammar for a
particular domain and it replied with a grammar heavily inspired by
one in its pre-trained knowledge set, this would not be evaluating
its reasoning capabilities. Consequently, we choose 3 domains so
as to avoid this problem.

1.1 Choice of Domain

1.1.1  HTTP3. HTTP/3 is the latest version of the Hypertext Trans-
fer Protocol, an application layer network protocol to transfer pack-
ets. HTTP/2 grammars are plentiful on the internet, so it is quite
possible that they can be found in the pre-trained knowledge set
of the LLM. We chose this grammar for two reasons: 1) The LLM
will likely struggle the least with this domain so it will serve as a
useful point of reference and 2) Since it has similarities to HTTP
2, it is possible the LLM will hallucinate and generate an HTTP 2
grammar instead, which is a useful data point to study

1.1.2 Nginx. Nginx is an open-source web server and proxy. Work-
ing with nginx involves constructing a well-formed configuration
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file describing the server’s properties and routes. This strict format
requires specific constructions for each “directive” and its parame-
ters. For example, each directive can be a simple directive or a block
directive, each with a different format. Additionally, each directive
can have no parameters, a specific number of parameters, or a flexi-
ble list of parameters depending on each directive. Each parameter
may be one of many types such as Unix file paths, URIs, boolean
values, etc. Although there are many example configurations on
the internet, no grammar exists to parse them, and we expect that
the complexity of the domain will be a good challenge for the LLM.

1.1.3  Brewin. Brewin is a custom language created by James Shif-
fer for UCLA CS 131. It is an interpreted language similar to LISP.
We chose this domain because it is unlikely that the LLM has seen
code examples of Brewin or any parser code or trees which might
inform its creation of a grammar. We expect Brewin to be a difficult
challenge for the LLM since it cannot just search its knowledge for
the answer and must synthesize a grammar from scratch.

2 Related Work

Few-shot prompting is a type of in context learning where examples
of the task to be accomplished are provided to the LLM in the
prompt. It has been demonstrated that few shot prompting improves
LLM performance on downstream tasks [1]. Consequently, we felt
it would improve our system’s grammar generation capabilities.
Many existing tools have been developed using grammar for
automating software development tasks like ANTLR and grammar-
inator. ANTLR defines a context free grammar format which can
be parsed with the tool to generate the lexer, parser, and abstract
syntax tree from the grammar [6]. ANTLR grammar can be used in
grammarinator to generate random test cases through fuzzing [3].

3 Implementation

We implement our pipeline with a Gradio UI frontend, langchain
middleware, and backend metrics using ANTLR and domain-specific
oracles. In our pipeline, the user inputs their request into the model
using the Gradio UI, which calls the langchain middleware. The
middleware calls the GPT4 API and then calls the backend evalua-
tion. After receiving the evaluations, the results are returned to the
user through the frontend with the generated grammar.

3.1 LLM Implementation

We set up a prompt template that tells the LLM to treat user queries
as requests for grammar. This template also takes in the history of
the conversation and the metrics as input. We take advantage of few-
shot prompting to teach the LLM how to format the response such
that it is parseable by grammarinator and our metric evaluators.
We also add several instructions to teach the LLM how to reason
from the prompt what kind of grammar it should generate and
what common pitfalls to avoid
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3.2 Retry Budget

Since LLMs are prone to hallucinations where they can deviate from
the user instructions [4], it is possible for the generated output to
sometimes not be in a grammarinator parsable format. This means
the rest of the system will fail to work with it, and thus we must
ensure our system is robust to such hallucinations. We establish a
“retry” mechanism, where if an exception is raised during any stage
of the evaluation process, we prompt the LLM again for an answer.
We “retry” up to a certain limit, and these retries are hidden from
the frontend.

3.3 Metric Implementation

To quantify the quality of generated grammars we needed to create
a mechanism which, given a textual response from an LLM, can
compute objective metrics. We implemented these mechanisms
using ANTLR. We use ANTLR to generate a generic visitor by pro-
viding it with a valid grammar of the ANTLR grammar creating a
generic visitor which can be thought of as a meta-grammar visitor.
We then overrode visitor methods so when our meta-grammar visi-
tor is used to parse the response of an LLM we can do computations
based on the nodes in the grammar being evaluated.

To generate the structure metrics we wrote another algorithm
that parses the grammar file in the g4 format and generates a call
graph accordingly using the library dot. We then use the call graph
to compute the structural metrics. We also render the graph as a
temporary PNG file to display it in the Gradio UI as output so that
the user can have a better representation of the grammar generated
by the LLM. The user can use this call graph to give better feedback
to the LLM.

3.4 Grammarinator

We use grammarinator to return feedback on grammar validity. We
call grammarinator to compile the grammar and check for syntax,
structure, or other errors in the grammar. If the grammar does not
successfully compile, the errors from grammarinator are returned
to the LLM, which can use the feedback to fix its grammar.

3.5 Domain Metrics

Domain metrics were called to provide metrics and feedback to
the user in online mode. For each domain, an oracle was used to
evaluate the grammar. We return any errors in that process to the
user, who can use the feedback to guide the LLM towards better
grammar. The quantitative feedback from the domain oracle is also
automatically fed back to the LLM.

4 Evaluation

We based our metrics analysis on On Defining Quality Based Gram-
mar Metrics [2] and A metrics suite for grammar-based software [7].
Those documents provided the size and structural metrics that we
used to assess the complexity and maintainability of the grammar
generated by the LLM. We also generated metrics on three domains:
HTTP/3 headers, nginx configuration files, and Brewin. HTTP/3 is
a relatively new protocol but is similar to HTTP/2 so we expect the
model to perform well on this domain. We selected nginx because
there are few publicly available grammars for parsing nginx con-
figuration files, so we believe that it will be a sufficient challenge

for the model. Finally, Brewin is a custom language created for CS
131 at UCLA so we believe no LLM has ever seen examples of this
domain before and will be a hard challenge.

4.1 Size Metrics

We implemented five metrics that provide insights into the size and
complexity of the grammar. We used ANTLR to generate a visitor
for the grammar file generated by the LLM and compute the size
metrics accordingly.

4.1.1  Number of terminals (TERM). Measures the total number of
terminal nodes in the grammar. A high value indicates that the
language has a rich vocabulary which would make parsing more
challenging and lexer rules more extensive. However, a low value
suggests a simpler language which might be easier to process but
potentially less expressive.

4.1.2  Number of non-terminals (VAR). Measures the total number
of non-terminal nodes in the grammar. A large number of non-
terminals implies a greater maintenance overhead since changes to
the definition of one may affect many others.

4.1.3  McCabe Cyclomatic Complexity (MCC). Measures the num-
ber of independent paths through a flow graph. A higher MCC value
suggests a more intricate structure with significant recursion and
dependencies among rules. This indicates a powerful but potentially
harder-to-understand grammar. On the other hand, a lower value
would suggest a simpler grammar with fewer interdependency.

4.1.4  Average RHS size (AVS). Measures the number of symbols
that we can expect to find on average on the right-hand side of
a grammar rule. It gives insights on how detailed and dense the
grammar is. A high value would mean that the rules are more
complex and thus it could lead to higher chances of ambiguity and
add more difficulty to the parsing process. On the other hand, a
lower value reflects a simpler grammar.

4.1.5 Halstead effort (HAL). Measures the complexity of the gram-
mar considering the number of operators (grammatical operations)
and operands (terminals and non-terminals) weighted by grammar
size. A high value means that the grammar is high in complexity due
to a lot of interrelations among rules or densely packed semantics.
A lower value suggests that the grammar is simpler. Compared to
MCC, it provides a better basis for judging differences in complexity
between grammars of different sizes.

4.2 Structural Metrics

The five structural metrics we implemented provide insights into
the complexity and interdependency within a grammar. Every met-
ric has a distinct function in assessing a grammar’s structure and
how it affects software maintenance. To compute these metrics, we
first had to build a call graph of the grammar generated by the LLM.
Then, we analyzed the call graph to determine those metrics.

4.2.1 Tree Impurity (TIMP). Measures how close the call graph is
to a tree structure. To compute this metric, we do the ratio of edges
to nodes, which indicates how interconnected the non-terminals
nodes are within the grammar. High TIMP values suggests that the
call graph is a dense network of dependencies, which can make the
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parsing process more complicated and potentially lead to design
issues. As a result, the goal is to have the TIMP value approach 0.

4.2.2  Number of Levels (CLEV). For this metric, we use the call
graph to partition the non-terminals into a set of equivalence classes
called grammatical levels. CLEV is calculated as the percentage
of the actual number of levels relative to the maximum possible
number of levels. A low CLEV value suggests that the non-terminals
nodes are grouped in a few equivalence classes which indicates
that the grammar is easier to understand, maintain, and extend. A
high value of CLEV suggests that the non-terminals nodes are more
evenly distributed across levels. Therefore, it might be possible to
reorganize them into more equivalence classes. The goal for the
model is to minimize CLEV by optimizing the grammar.

4.2.3 Non-singleton Level (NSLEV). Counts the number of equiva-
lences classes derived by the call graph that have more than one
non-terminal node in it. This metric gives an idea of how many
equivalence classes define the core logic of the grammar. Indeed,
[2] explains that central language concepts, such as declarations,
expressions and statements tend to be represented by larger classes,
highlighting logical groupings in the grammar. A high NSLEV value
suggests that the grammar has various clusters of closely related
rules. It could indicate a modular and reusable design. On the other
hand, a low NSLEV value would indicate a language with less mu-
tual recursion that is more fragmented or overly detailed.

4.2.4 Size of largest level (DEP). Measures the number of non-
terminals in the largest grammatical level (derived from the call
graph). DEP measures balance of the distribution of non-terminals
nodes is across the different levels. A high DEP value, especially if it
represents a large proportion of the total non-terminals, means that
the distribution is uneven. This could indicate poor modularization
or excessive complexity. On the other hand, a low DEP value sug-
gests an even distribution across the different levels which could
correspond more to a well-structured and modular grammar.

4.2.5 Maximum height (HEI). Measures the maximum height of
the call graph, which corresponds to the longest path across the
different levels. This metric gives another measure of the dispersion
of the non-terminals among the grammatical levels.

4.3 Domain Metrics

For each domain, we define a positive set of examples which are
valid in the domain. For example, all the valid nginx configuration
files which would normally pass validation by the nginx runtime.
Similarly, we can define the set of all invalid examples in the domain.
We generate a small set of examples of varying complexity for each
domain with positive and negative examples from each set. We
expect an ideal grammar to be complete and correct.

o By complete we mean that the grammar parses every posi-
tive example without errors, and all of the correct relational
structure is extracted.

e By correct we mean that the grammar rejects every neg-
ative example and identifies the error, and any incorrect
relational structure is rejected.

To measure completeness and correctness, we run the model’s
generated grammars on the test set and generate a confusion matrix.

We make the confusion matrix of true positives (positive examples
correctly parsed), false positives (negative examples incorrectly
parsed), true negatives (negative examples correctly rejected), false
negatives (positive examples incorrectly rejected). From the confu-
sion matrix, we generate the F; score defined in equation 1.

_ 2% TP

~ 2xTP+FP+FN @
We evaluate the best grammar generated by the model on each

domain using the F; score. This score incentivize the model to

maximize true positives (TP) while minimizing false positives (FP)

and false negatives (FN). The best score is 1.0 and the worst score

is 0.0.

F

4.3.1 HTTP/3. HTTP requests are web requests that contain a start
line, headers, and body. The start line defines the method and HTTP
version, the headers are specifications about the request, and the
body contains the data payload. Due to the ubiquity of HTTP, we
anticipate that the LLM will effectively generate correct grammar
since its training corpus has many instances of valid HTTP requests.
Specifically, we believe that it will generalize trivially to HTTP/3,
despite it being a recent version, since the only required change
compared to past versions will be changing the version number
in the start line. Therefore, we feel this serves as a good baseline
of the LLM’s capabilities in generating desired grammars for our
other specific domains.

We assess the validity of generated grammar by having the URL
for fuzzed examples be “https:// postman-echo.com”, a website
tailored for diagnosing HTTP request correctness. We measure
the performance of 25 fuzzed examples from the grammar with 5
perturbed examples to evaluate the confusion matrix.

Our findings indicate that the grammar correctly parses validly-
formed HTTP requests at a 100% frequency on the test suite. How-
ever, it also validly parses all of the perturbed tests as well. This
is because the perturbations are applied to the URL. Since there
is a theoretically infinite number of valid URL’s, the grammar is
incapable of identifying incorrect URL’s since that can only be done
empirically. Thus, this permittivity is accounted for. We opted not to
apply other perturbations since we have found postman-echo to be
permissive for malformed header and body fields. Thus, modifying
these does not provide additional insights since the ground truth
for them will be that they are well-formed and so the confusion
matrix will remain composed of only true-positives.

4.3.2  Nginx. Nginx configuration files are highly structured files
with a limited set of “directives” each with specific semantic require-
ments. For example, each directive may have multiple parameters,
each of different types. Additionally, each directive has a specific
scope which limits its relation to other directives. We believe that
this domain will be challenging for an LLM to generate complete
and correct grammar. We also write a baseline grammar for this
domain to compare against the LLM generated grammar and can
be found in Appendix B.

We evaluate the LLM generated grammar against a simple base-
line (appendix B), which is complete but not correct. We evaluate
based on a set of 5 correct and 5 invalid example nginx configu-
ration files and generate the confusion matrix. The grammar is
used to parse each example nginx configuration file. For positive
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examples, we expect the grammar to successfully parse the example
without errors. For negative examples, we expect the grammar to
return an error and unsuccessfully parse the example. We generate
a confusion matrix for the grammar.

4.3.3 Brewin. Brewin has standard features of any strongly typed
object-oriented language, such as functions, classes, and exceptions.
Syntactically, it is not unlike Lisp, with all expressions being en-
closed in parentheses, sometimes with deep nesting, and operators
ordered in Polish notation. Few-shot prompting with code examples
is used as a basis for grammar generation.

The LLM-generated grammars were tested on a set of 17 refer-
ence Brewin programs, 12 of which were known to run without
issues, and 5 of which returned errors from the canonical interpreter,
ranging from syntax errors to incorrect keywords to duplicate defi-
nitions. Similar to Nginx, a confusion matrix was generated, and
used in computing the F1 score metric.

5 Results

We run the evaluation metrics on each domain and record the best
grammar generated over several iterations of human feedback. We
compile a table for each domain showing the metrics for the best
grammar.

5.1 HTTP/3 Online
F1: 0.9 (validation set: 25 positive, 5 negative)

TERM 26 TIMP  10.5
VAR 15 CLEV 1
MCC 13 | NSLEV 3
AVS 5.33 DEP 5
HAL 2395 HEI 8

Table 3: Brewin Online Metrics Size & Structural

5.4 Brewin Offline Graphs

We run the model on the Brewin domain for 10 iterations without
human feedback as “offline learning”. We measure the metrics on
each iteration and graph the metrics over time to show how well
the LLM is guided by the metrics alone on the least seen domain.

TERM 24 | TIMP 458
VAR 17 | CLEV 1
MCC 4 | NSLEV 3
AVS 29 DEP 3
HAL 778 HEI 6

Table 1: HTTP/3 Online Metrics Size & Structural

5.2 Nginx Online

F1: 0.0 (validation set: 5 positive, 5 negative)

Baseline F1: 0.666

TERM 94 TIMP  0.392
VAR 31 CLEV 1
MCC 40 | NSLEV 4
AVS 5.84 DEP 19
HAL 5979 HEI 4

Table 2: Nginx Online Metrics Size & Structural

5.3 Brewin Online

F1: 0.15 (validation set: 12 positive, 5 negative)
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Fig 2 and Fig 3 highlight key differences between the online and
offline grammar generation approaches. The AVS metric exhibited
a downward trend in both modes until online intervention removed
anon-terminal, increasing AVS but improving other metrics overall.
HAL consistently decreased across both modes, reflecting steady
optimization. Most importantly, the F1 score shown in Fig 1, which
dropped to zero at some point in both modes, failed to recover
offline, whereas online intervention allowed the LLM to address
errors and improve. Interestingly, seven metrics improved in online
learning versus only three offline over the course of 10 iterations,
suggesting there is value in human guidance. The increased “jitter-
ing” in online metrics further demonstrates the stronger influence
of human intervention enabling better grammar generation.

5.5 Generated Nginx Grammar Call Graphs

The nginx performance was not as expected, so we generated the
grammar call graphs for the nginx grammar produced during the
online generation with human feedback. During generation, we
noted that the grammar continued to switch between two states
shown in Fig 4 and Fig 5 (Appendix C)when the LLM was prompted
to either connect all the rules or ensure that all lexer rules were
defined.

6 Conclusion

In our project, we experiment with various LLM techniques such
as few-shot prompting, and online and offline feedback models,
towards automated generation of grammars on unseen domains.
We show that LLMs have a promising role in the automated gen-
eration of grammars, but ultimately show that such models find
most unseen grammar domains challenging. We note that domains
that are close to existing knowledge in the LLM such as HTTP/3

performed better, and shows that the LLM can modify existing
known grammars. However, our model struggled with generating
new grammar on completely unseen domains.

We also attempted to incorporate Retrieval Augmented Gen-
eration on a separate branch of our code (setup-RAG-brewin) to
see if it would improve the results on Brewin. We uploaded a pdf
containing more information on Brewin which was broken apart
into vectors and retrieved with a retriever when the LLM needed it.
The hypothesis was that giving it more knowledge on the domain
would help it perform better, as user prompts are an inherently
limited medium and this was a completely new domain. However,
this did not help it at all. There was no demonstrable difference
in generation quality. This indicates that the problems with using
LLMs to generate grammars are not linked to a lack of information
on the domains said grammars would be used for.

Additionally, as discussed above, the two callgraphs for nginx
were simply shuffled around versions of each other with issues
inherent to their design that made them unsuitable. This is despite
the prompting indicating what errors the LLM made and how to fix
them. This indicates that the LLM lacks an implicit understanding
of what it is doing. This would line up with the results demonstrated
by McKenna, which show that due to a series of biases inherent in
LLMs, they lack implicit reasoning capabilities [5] Consequently,
when asked to generate a grammar for a domain, it lacks implicit
understanding of how the different parts of the grammar connect.
This indicates one direction to study is using LLMs to generate parts
of grammar rather than the entire grammar from top to bottom
and gluing them together.

Future experimentation could focus on improving the quality
of grammar generated by the LLM. We suggest a few approaches
based on our findings that may improve a model’s performance.

e We believe that better model selection will result in better
results. The GPT4 model we selected is useful as a general-
purpose LLM, however on the specific task of generating
grammatr, a custom-trained model will likely perform sig-
nificantly better. Some instruction fine-tuning may be in
order.

o Better feedback interpretability may allow the model to
respond better to automated feedback. Parsing grammar er-
rors to give targeted feedback was done manually, and may
not have been ideal. Automated parsing and interpretation
of grammar errors could allow the model to fix grammar
and improve on the metrics.

e Our testing shows that the distance between our chosen
domains and the LLM’s knowledge domains was a large
factor in the model’s performance. The HTTP/3 domain per-
formed perhaps because of its similarity to HTTP1 which
is within the model’s knowledge. Better
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A Running The App

The project git repository can be found here (link). Instructions
can be found in the README. After cloning the repiository, please
install the requirements by running;:

pip install -r requirements.txt

pip install antlr4-python3-runtime==4.13.0
pip install antlr4-tools==0.2.1

pip install graphviz

sudo apt get graphviz

You will also need to install thge java runtime and nginx. The
app can be run from frontend/app.py.
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C Generated Nginx Grammar Call Graphs

Generated call graphs for the nginx grammar can be found on the
following pages.
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Figure 4: Nginx Call Graph 1
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Figure 5: Nginx Call Graph 2
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