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Abstract—Understanding and explaining the structure of gen-
erated test inputs is crucial for effective testing, debugging, and
analysis of software systems. However, existing approaches—such
as probabilistic context-free grammars (pCFGs) and large lan-
guage models (LLMs)—lack the ability to provide fine-grained
statistical explanations about generated test inputs and their
structure. We introduce ExplainFuzz, a novel framework that
leverages probabilistic circuits (PCs) to model and query the
distribution of grammar-based inputs in an interpretable manner.
Starting from a context-free grammar (CFG), we refactor it to
support PC compilation, and train the resulting Probabilistic
Circuit on a synthetically generated corpus produced with
Grammarinator during a fuzzing campaign. The trained PC
supports a variety of probabilistic queries (e.g., P(JOIN) or
P(BY | ORDER)), offering insight into the statistical distribution
of generated inputs. Additionally, for the SQL domain, we
demonstrate a custom generator that transforms PC generated
samples into executable queries by leveraging PC’s generation
capabilities to enable concrete synthetic test input generation.
We evaluate ExplainFuzz across multiple domains including
SQL, REDIS, and JANUS, highlighting its ability to provide
explainable, grammar-aware insights into test input structure.
Our results show that ExplainFuzz outperforms traditional
pCFGs and LLMs in terms of log-likelihood estimation and
interpretability, contributing a new direction for explainable
grammar-based fuzzing.

Index Terms—Probabilistic Circuit, Context-Free Grammar,
Grammar-Based Fuzzing, Explainable AI

I. INTRODUCTION

Generating high-quality test inputs is essential for effective
software testing, particularly in domains like compilers and
databases where inputs must follow complex syntactic struc-
tures. Grammar-based fuzzers such as Grammarinator [|1]] and
SQLSmith [2] have shown promise in producing syntactically
valid inputs. However, these tools typically lack support for
reasoning about the distributions of generated inputs. This
limits the ability to understand test coverage, identify biases,
or explain why certain structures appear more frequently than
others.

We present ExplainFuzz, a novel framework that introduces
explainability into grammar-based test generation by leverag-
ing probabilistic circuits (PCs). ExplainFuzz compiles context-
free grammars (CFGs) into tractable probabilistic models
and trains them on inputs generated by grammar fuzzing.
Once trained, the PC enables structured inference, allowing
users to query a variety of probabilistic properties over input
structures. For example we can ask for the probability that a
WHERE clause of a SQL query is followed by ORDER BY.
We evaluate ExplainFuzz across four dimensions. First, we
measure the likelihood of the generated inputs by comparing

them with real-world examples (Section . Second, we
assess the accuracy of PC-based inference across multiple
domains, showing that the model captures key structural
patterns (Section [IV-B). Third, we analyze the scalability
and performance of PC training in grammars of varying
complexity (Section [[V-D). Finally, we present a case study
in the SQL domain, where we concretize PC samples using
a custom generator and evaluate the well-formedness of the
resulting queries (Section [IV-E). Together, these evaluations
demonstrate ExplainFuzz’s ability to model and reason about
structured input spaces, offering a new explainable foundation
for grammar-based fuzzing.

This paper makes the following contributions:

« We propose ExplainFuzz, a novel test input generator
that combines grammar refactoring, probabilistic circuit
(PC) learning, and optional semantic concretization to
enable explainable input generation.

e We show that PCs can learn and approximate structured
input distributions from seed corpora more accurately
than traditional PCFG-based fuzzing or LLM-generated
inputs.

« We introduce interactive reasoning capabilities over the
learned input distribution, allowing users to query prob-
abilities of grammar constructs and their co-occurrences.

« We demonstrate that while PC-based generation improves
structural realism, domain-specific concretization is re-
quired to achieve well-formedness in semantically rich
domains like SQL.

II. BACKGROUND AND RELATED WORK
A. Grammar-Based Fuzzing

Grammar-based fuzzing is a software testing technique that
generates well-formed inputs based on a formal grammar.

Despite its strengths, grammar-based fuzzing struggles with
domain-specific semantics. For instance, in SQL, a fuzzer
might generate inputs like SSELECT DISTINCT '’’’ AS
a FROM J4$ AS 06, (x ) AS V4; that are syntacti-
cally valid but semantically invalid—e.g., due to malformed
subqueries or illegal table aliases—rendering them unusable
in practice.

Second, there is a lack of explainability. Tools such as
Grammarinator [I] can produce thousands of inputs quickly
but offer little insight into which parts of the input space are
being explored or why certain structures are overrepresented,
making it difficult to assess test coverage and bias.

Finally, biasing input generation toward specific constructs
is challenging. While tools like Grammarinator can mutate



an initial population of inputs to encourage variety, these
mutations are typically random or rule-based. This limits
the usefulness in grammar-based fuzzing in exploring high-
priority sub-domains like those which are observed to produce
bugs.

B. Probabilistic Grammar Learning

Probabilistic Context-Free Grammars (PCFGs) enhance
context-free grammars by assigning probabilities to production
rules, defining a distribution over derivations. These probabil-
ities are estimated from a corpus of examples.

PCFGs guide tasks like fuzzing or program synthesis by
favoring more probable syntactic structures. Tools such as
Skyfire [3]] use these techniques to prioritize likely inputs
during grammar-based fuzzing.

However, PCFGs cannot model context-sensitive distribu-
tions. The probability of selecting a production rule is fixed
and does not depend on derivation history or token position.
This limitation prevents capturing long-range dependencies or
context-dependent preferences, crucial for modeling realistic
input distributions. The assumption of independence reduces
the accuracy of learned distributions, especially for complex
input formats with conditional constraints or hierarchical struc-
tures.

C. Probabilistic Circuits

Probabilistic circuits (PCs) are a general class of tractable
probabilistic models that represent complex probability distri-
butions using a graph composed of sum nodes, product nodes,
and leaf nodes [4], [5]. Specifically, leaf nodes represent
elementary distributions, while sum nodes take a mixture
of their children and product nodes take an independent
decomposition of their children. PCs have been shown to
subsume most existing tractable probabilistic models, such as
bounded-treewidth Bayesian networks or cutset networks.

The key strength of PCs lies in their tractability: under
specific structural constraints, such as smoothness and decom-
posability, PCs allow for the exact computation of marginal
probabilities, conditionals, and maximum a posteriori estima-
tion (MAP) in time linear to the size of the circuit [6]]. These
properties make them highly explainable and suitable for struc-
tured inference. Moreover, PCs can be trained on data using
expectation maximization or gradient-based optimization, a
common training technique for neural networks. As PCs are
generative models, new instances can be sampled from this
learned distribution [6]].

ITI. APPROACH AND IMPLEMENTATION
This section describes the system design and implementa-
tion of ExplainFuzz.

A. Overview

Figure E] illustrates the architecture of ExplainFuzz, which
consists of three interconnected stages: (i) Preprocessing (ii)
Probabilistic Circuit Learning, and (iii) Concretization.

a) Preprocessing: To ensure proper mapping from the
CFG to PC, we need to refactor the existing grammar of the
chosen domain. The grammar refactoring process separates
a combined ANTLR grammar—containing both lexical and
syntactic rules—into distinct Lexer and Parser components.
Then, we remove quantifiers from the parse rules and ensure
no rule consists of more than two nullable non-terminal
productions, to convert the grammar to Chomsky Normal Form
(CNF). The resulting refactored grammar is used consistently
across subsequent components. In the Fuzzing Campaign
phase, a seed corpus and the refactored grammar are fed into
Grammarinator, which generates a large set of syntactically
valid inputs. This step provides a diverse training corpus that
reflects the distribution of the seeds.

b) Probabilistic Circuit: The refactored parser is then
used to build a Probabilistic Circuit (PC), such that the
support of the PC distribution is the language of the grammar.
The PC is trained on the generated dataset to learn structural
distributions over symbolic grammar tokens.

c) Concretization: The concretization step bridges the
gap between the anonymized syntax and real-world con-
straints, enabling meaningful fuzzing outcomes. The PC
guides the generation of new inputs that are not only
grammatically valid but also explainable. These sampled
anonymized inputs are passed to a custom generator, which
incorporates domain-specific context to produce concrete, ex-
ecutable test cases.

To support interactive use, ExplainFuzz includes a user
interface that allows users to generate customized inputs or
query the likelihood of specific structural patterns. This Ul
component enables real-time exploration of the probabilistic
model and fosters user-guided fuzzing scenarios.

B. Grammar Refactoring

The grammar refactoring process is implemented in Python
and leverages the ANTLR4 runtime to parse and transform
ANTLR grammars into Chomsky Normal Form (CNF), a
prerequisite for probabilistic circuit construction. CNF trans-
formation ensures that each production rule is either of the
form A — BC or A — a, where A, B, C are nonterminals
and a is a terminal.

This structured transformation ensures compatibility with
downstream PC construction while preserving the semantics
of the original grammar.

C. Fuzzing Campaign

We use Grammarinator to generate 10,000 inputs per do-

main for training and evaluation, applying two strategies:

« Mutational Mode (no-generate): Fuzzes five real-world
seed inputs to produce syntactically valid samples that
preserve realistic structure and distribution.

« Generative Mode (with-generate): Generates inputs
directly from the grammar without seeds, increasing
syntactic diversity but often reducing semantic realism.

Each dataset is split into 9,000 training and 1,000 test

samples. Before training, inputs are anonymized using the
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Fig. 1. System overview of ExplainFuzz: grammar refactoring, fuzzing campaign, PC learning, inference, and generation.

grammar’s lexer by replacing all literal tokens (e.g., strings,
numbers, identifiers) with symbolic terminal names (e.g.,
STRING, Number, Identifier), reducing vocabulary and
simplifying the PC.

D. PC Compilation

On a high level, the construction of a probabilistic circuit
from a context-free grammar resembles bottom-up parsing
techniques such as the well-known CYK algorithm [7]]. Just
as a bottom-up parser, we start with single terminal symbols
and build up nonterminal derivations from there. Unlike a
parser, the circuit construction does not consider a specific
input sequence but takes every possible input sequence into
account. This means we need to assume a maximum length
of the input sequence.

Algorithm || (described in the appendix) provides pseudo-
code for the PC construction. The circuit construction first
adds a sum node for each nonterminal symbol in the grammar
and each subset of the sequence (i.e., a starting and ending
position). Next, we add a product node for each rule and subset
of the sequence. The conjunction node takes as children the
two symbols that are required in the rule, while the disjunction
node takes as children all the conjunction nodes that derive its
rule for the specific sequence subset.

Figure [ (appendix) illustrates the process on a simple
arithmetic ANTLR grammar, through its refactored CNF form,
to the resulting probabilistic circuit (PC) constructed using
Algorithm |If (cf Appendix) with a maximum sequence length
of 5. We implement the circuit construction in Python using
the KLay library [8]], enabling GPU-accelerated training.

E. PC Inference

We leverage the trained PC to query the structure of inputs,
which is crucial for understanding the underlying patterns and
probabilities associated with different test inputs. ExplainFuzz
implements four classes of queries tractable in linear time
using a PC: marginal, conditional, maximum a posteriori, and

complete evidence queries. Within each class, we can ask
various types of queries. The complete list of these can be
seen in figure [6] of the Appendix.

Those queries can be used to understand the space of
test inputs and could guide further refinement of the input
generation process.

F. PC Sampling

Beyond inference, the trained probabilistic circuit (PC) can
be used for input generation by sampling from the learned
distribution. This allows us to explore the space of valid,
grammar-conforming inputs that reflect the structural patterns
observed during training. Moreover, the PC supports con-
ditional sampling, enabling generation under specific con-
straints. For instance, one can sample inputs that include a
given token either anywhere in the sequence or at a specific
position. It is also possible to enforce the presence of fixed
subsequences of tokens while allowing the rest of the input
to vary probabilistically. This flexible conditioning capability
makes PCs a powerful tool for guided generation, test case
synthesis, and controlled exploration of input spaces.

G. Custom Concretization Phase for SOQL Domain

Because the PC operates over anonymized inputs—where
literals like strings or identifiers are replaced by symbolic
terminals—samples must be concretized into executable SQL
queries. This reverse lexing process requires domain-specific
logic to ensure semantic validity.

We implement a custom concretizer for SQL, which per-
forms the following:

1) Schema Retrieval: Connects to a PostgreSQL database
to extract table names, column names, and types.

2) Token Replacement: Replaces fixed tokens (e.g.,
" SELECT’ — SELECT) using ANTLR lexer mappings.

3) Schema-Aware Parsing: Parses queries with placehold-
ers using a modified ANTLR lexer and listener to track
context (e.g., inside a WHERE clause).



4) Contextual Insertion: Replaces placeholders with
schema-consistent values—e.g., valid column names for
Identifier, words for StringConstant, and type-
matching numbers.

H. Interactive User Interface

To make ExplainFuzz accessible to users across different
domains, we provide an interface that supports domain selec-
tion, model configuration, and interactive querying. This UI
was implemented using the Python library Gradio.

a) Domain and mode Selection: The Ul supports a
predefined set of domains, each associated with a specific
ANTLR grammar and corresponding datasets. Upon launching
the interface, the user selects the desired domain (e.g., SQL
or CSV). The user can choose between a model trained using
only grammar-derived inputs (mode with-generate) or a model
trained using a seed corpus (mode no-generate). This dual-
mode configuration allows users to compare purely syntactic
structures with more semantically rich patterns learned from
real-world inputs.

b) Querying Structural Probabilities: Users can explore
the structural properties of the learned model by selecting from
a predefined set of probabilistic queries (see Section [[II-E).
Figure [/| (in the appendix) shows a screenshot of the user
interface.

¢) Concrete Input Generation: The Ul also supports
the generation of a user-specified number of inputs. For the
SQL domain, it leverages the custom concretization phase
to produce fully executable queries. For other domains, the
generated inputs remain partially anonymized: only tokens
with unambiguous symbolic representations are replaced with
their corresponding literals, while ambiguous placeholders
(e.g., NAME, INT) remain generic.

IV. EVALUATION

We evaluate ExplainFuzz across multiple dimensions to as-
sess its effectiveness, generalizability, and practical utility. Our
evaluation is structured around four core research questions
(RQs), each targeting a specific capability of the system. These
include: the quality of the learned probabilistic model, the
system’s inference capabilities, scalability across domains,
and the well-formness and efficiency of input generation for
the SQL domain.

A. Likelihood of Generated Inputs

a) Research Question: RQ1: Is the likelihood extracted
from PC better than the likelihood of LLM and PCFG?
We investigate whether ExplainFuzz more accurately cap-
tures the distribution of domain-specific inputs compared to
PCFGs, LLMs and a dense PC by measuring the negative
log-likelihood.

b) Methodology: We compare four models: (1) PC (Ex-
plainFuzz), our probabilistic circuit built from the grammar
and trained on anonymized training data; (2) PC (HMM)
unstructured PC modeled as a Hidden Markov Model (HMM),
using a right-linear vtree and approximately 260K edges and

trained of the same anonymized training data. This configu-
ration mirrors the approach used in neural-guided symbolic
modeling systems such as Ctrl-G [9]; (3) PCFG, a proba-
bilistic context-free grammar with rule probabilities estimated
from the same training data; and (3) LLM, a pre-trained GPT-
2 model prompted with the 5 anonymized seed queries. All
models are evaluated on a held-out test set collected during the
no-generate fuzzing phase, ensuring input distributions
are consistent with the training seeds. For each model, we
compute the average log-likelihood over all test queries: for
PC and PCFG by summing rule or node log-probabilities; for
LLM by scoring test queries via standard left-to-right token
likelihood.

c) Metric: We report the average negative
likelihood per query, defined as follows.

log-

N
. I 1
Negative Avg Log-Likelihood = N ; log P(x;)
where x; is a test query, and P(z;) is the probability assigned
by the model. The negative likelihood score indicates how well
a model explains the data it did not see during training (lower
is better).

Average Negative Log-Likelihood Across Domains
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Fig. 2. Negative log-likelihood VS method type.

d) Log-likelihood of generated inputs: Figure [2] presents
the average log-likelihood achieved by the three methods
across seven domains: SQL, JANUS, REDIS, B,CSV. HTML
and JSON. The results are averaged across different maximum
input lengths, which explains the presence of error bars.

We observe that the structured PC model (ExplainFuzz)
achieves the best (i.e., lowest) average log-likelihood in five
out of seven domains: SQL, B, CSV, HTML, and JSON. In
contrast, in the JANUS and REDIS domains, the unstructured
model (HMM) performs best, with ExplainFuzz ranking sec-
ond.

Overall, these results highlight the PC model’s strength
in capturing domain-specific input distributions. Unlike the
PCFG, which assigns fixed probabilities to production rules,
the PC can duplicate and specialize rules, enabling it to learn
more context-sensitive and fine-grained patterns. This leads



to more accurate modeling of the input space, especially in
domains with rich structure.

The LLM, by contrast, performs worse across all domains,
even when provided with few-shot examples. This can be
explained by the LLM’s broad pretraining objective: while
it has been trained on vast amounts of data, this generality
makes it less effective at modeling narrow, domain-specific
distributions.

Although unstructured models like the HMM can outper-
form structured approaches in certain domains —thanks to
their greater expressivity and ability to capture fine-grained
distributional nuances— they lack grammar constraints and
may generate invalid sequences. This limits their practical
utility for tasks such as fuzzing or program synthesis, where
syntactic correctness is essential. By contrast, ExplainFuzz
enforces grammatical validity while still learning expressive,
context-sensitive distributions, resulting in superior perfor-
mance in 5 out of the 7 domains. This confirms the benefit
of combining structural constraints with probabilistic circuit
modeling, a strategy that balances expressivity and correctness.

B. Accuracy of PC-Based Inference

a) Research Question: RQ2: How accurately does Ex-
plainFuzz estimate queries about the distribution?

This serves as a sanity check to validate that the probabilis-
tic circuit (PC) accurately captures the underlying distribution
of the seed inputs. Specifically, we assess whether the learned
distribution aligns with the original data used during training,
confirming that the PC is functioning as expected.

Domain Query Type From seeds Random
B Conditional 0.0757 0.2392
B Complete Evidence 0.1312 0.1429
B Marginal 0.0353 0.0938
JANUS  Conditional 0.1679 0.3713
JANUS  Complete Evidence 0.1281 0.2000
JANUS  Marginal 0.1522 0.3384
REDIS  Conditional 0.1602 0.4457
REDIS  Complete Evidence 0.0993 0.1428
REDIS  Marginal 0.0450 0.2832
SQL Conditional 0.0030 0.0813
SQL Complete Evidence 0.0973 0.1667
SQL Marginal 0.0303 0.4926

Fig. 3. Mean absolute differences in PC distribution and ground-truth seed
probabilities by domain, query type, and mode (random or from seeds).

b) Methodology: We extracted the ground-truth proba-
bilities from a set of input seeds. Then, we compared the
ground truth against the probability distribution from the PC
after training on generated datasets (mode no generate, ie from
seeds). We expect the PC distribution to resemble the original
seeds. We also train a PC using randomly generated inputs
(mode with generate, ie random), expecting that the distri-
bution of this model will differ from the ground-truth seeds.
We assess the distribution using marginal, conditional, and

complete evidence queries, as described in [subsection III-E

This approach validates the effectiveness of PC training in
capturing the underlying distribution of the seed data.

¢) Results: Our results show that the distribution of the
PC trained on randomly generated inputs varies significantly
from the distribution computed directly from the seeds. Ad-
ditionally, the probabilities computed from the seed-generated
inputs are more similar to the ground-truth distribution com-
pared to the PC trained with randomly-generated inputs across
every domain and query class This highlights the
importance of using representative training data and shows that
the conditional PC effectively captures the true distribution of
inputs observed during inference.

C. Case Study: Uncovering Underrepresented Structures in
SQOL Inputs

To demonstrate the practical utility of inference queries,
we consider a scenario in the SQL domain using a PC
trained on hand-crafted seed inputs. After encountering a rare
bug involving a GROUP BY clause, a developer wishes to
assess how well this structure is represented in the test input
distribution.

a) Quantifying Representation: The developer first issues
a marginal (MAR) query to estimate how frequently the token
GROUP appears in the training distribution. The PC reports
P(GROUP) = 0.0128, in contrast to P(ORDER) = 0.8161,
indicating that GROUP clauses are heavily underrepresented
relative to other common SQL constructs such as ORDER BY.

b) Contextual Exploration: To explore the syntactic
contexts in which GROUP appears, the developer issues
conditional (COND) queries. The probabilities P(GROUP |
FROM) = 0.0128, P(GROUP | JOIN) = 0.0018, and
P(GROUP | WHERE) = 0.0129 confirm that GROUP tends
to follow FROM and WHERE clauses as allowed by the
grammar. The query P(ORDER | GROUP) = 0.7518 shows
that when GROUP does appear, it is usually followed by an
ORDER BY clause. This reflects the fixed clause order im-
posed by the grammar, rather than optional or semantic usage.
Interestingly, P(HAVING | GROUP) = 0.0033 reveals that
HAVING rarely follows GROUP, despite the strong semantic
relationship between these two clauses.

c) Outcome: These queries confirm that GROUP BY
clauses are both rare and structurally fragile in the test distri-
bution. Even when they occur, they are not often followed by
semantically related constructs such as HAVING. Armed with
this insight, the developer may choose to augment the seed
set with more examples featuring GROUP BY and HAVING,
or to apply conditional sampling using ExplainFuzz’s cus-
tom generator to better target such underrepresented and
semantically rich combinations. This illustrates how structure-
aware probabilistic inference can surface blind spots in input
generation and suggest actionable refinements.

D. Scalability / Performance

a) Research Question: RQ3: How well does Explain-
Fuzz scale across domains with varying grammar com-
plexity, and what are the key limitations?



TABLE I
CAPABILITY EVALUATION ACROSS DOMAINS AND PIPELINE COMPONENTS
Vi pass - X: fail - (V')* : pass with some adjustments

Domain Grammar Refactoring | Fuzzing Campaign | PC Compilation | PC Training | PC Inference | PC Sampling | Concretization
SQL (Simplified) v v V)H* v v v v
JANUS v v v v v 4 X
REDIS v v v v W)H* v X
B v v v v v v X
CSv v v 4 v W)H* v X
HTML v v V)H* v v v X
MLIR v v V)H* X X X X
JSON v v v v W)H* v X
CloudFormation (JSON) W)* X W)* X X X X
Lua X X X X X X X

This evaluation investigates the generality and scalability
of ExplainFuzz across multiple input domains. Our goal is
to understand how the system performs when applied to
grammars of differing structural complexity, and to identify
which stages of the pipeline—such as grammar refactoring,
probabilistic model construction, or input generation—present
the most significant challenges. By analyzing performance
across diverse domains, we aim to assess the robustness and
adaptability of the approach, as well as to highlight current
limitations and opportunities for improvement.

b) Methodology: To evaluate the scalability and domain
applicability of ExplainFuzz, we conducted an empirical study
using a diverse set of grammars collected from the open-
source ANTLR4 grammar repository. For each domain, we
ran the full ExplainFuzz pipeline and recorded the furthest
stage reached without errors in the pipeline. This allowed us
to identify at which step failures or limitations typically occur.

c) Capability Analysis Across Domains: We begin our
analysis by evaluating the applicability of the pipeline across
different domains, as shown in Table Each domain is
assessed for its ability to support the seven key stages of
the pipeline: grammar refactoring, fuzzing, PC compilation,
training, inference, sampling, and concretization.

« SQL (Simplified): The full pipeline succeeds if we relax
the constraint requiring the grammar to be unambiguous
during PC compilation. Concretization is successful here
due to a domain-specific generator implementation.

« JANUS, REDIS, B: These domains support all stages
except concretization.

« HTML : The entire pipeline, except for the concretiza-
tion stage, succeeds if we relax the requirement for the
grammar to be unambiguous during PC compilation.

o CSV, JSON: These grammars proceed through all
pipeline stages except concretization. However, the in-
ference step yields limited insights due to the structural
simplicity and high anonymization of these inputs.

e MLIR: The pipeline fails during PC compilation and
training due to the complexity of the grammar and the
excessive length of seed inputs. While compilation may
succeed for short sequence lengths, these cases are not
useful because the training dataset don’t have inputs of
these sizes.

« CloudFormation (JSON): PC compilation succeeds for

short sequence lengths using a JSON-based grammar that
was manually extended with token constraints to improve
inference, along with a dataset derived from real-world
examples. However, PC training fails due to the excessive
length of seed inputs, requiring the min sequence length
to be over 1000 tokens.

e Lua: This grammar requires an external Lexer which is
not supported by our refactoring module, thus the pipeline
fails at the first step.
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Fig. 4. Circuit size vs max sequence length (Left) and Compilation time vs
max sequence length (Right) for the MLIR and CloudFormation domains.

d) Quantifiers, Anonymization, and Tokenization.: A
core challenge in compiling PCs from context-free gram-
mars stems from quantifiers (e.g., *, +, ?) that allow for
arbitrarily long constructs such as lists, strings, or nested
objects. To make compilation tractable, ExplainFuzz applies
anonymization by default—replacing unbounded fields like
string literals or identifiers with generic placeholders (e.g.,
STRING, IDENTIFIER). This significantly reduces the size
of the grammar and resulting circuit, enabling full compila-
tion and training, as shown for the JSON domain. However,
anonymization collapses semantic distinctions, limiting the
PC’s ability to learn meaningful relationships between domain-
specific keys and values.

To address this, we experimented with fokenization in the
AWS CloudFormation template domain, which lacks a formal
grammar beyond JSON. Instead of treating string values as
atomic placeholders, we applied a pre-trained LLM tokenizer
to preserve semantic detail by breaking values into meaningful
subword units. This approach is better suited for informative
inference in theory, but it dramatically increased the number
of terminal symbols and grammar complexity. As a result,



the circuit size grew beyond ExplainFuzz’s compilation limits,
making it inapplicable in practice.

Figure [ quantifies this trade-off. Both CloudFormation
and MLIR quickly hit the 2,500-second compilation timeout.
MLIR reaches 20M nodes at sequence length 40—well below
its 120-token average—while CloudFormation reaches 13M
nodes at length 155, still far from its 2,000+ token average.
These results highlight a core limitation: anonymization en-
sures tractability but sacrifices semantic richness; tokenization
preserves expressiveness but severely limits scalability in
complex domains.

E. Case Study : Well-formness of the generated inputs for the
SQOL domain

a) Research Question: RQ4: Is ExplainFuzz able to
generate well-formed test data? This evaluation assesses
the syntactic and semantic validity of the inputs generated by
ExplainFuzz compared to baseline methods such as Grammar-
inator and SQLSmith.

b) Methodology: To evaluate the success rate, we com-
pare the ability of ExplainFuzz, Grammarinator and SQLSmith
to generate valid inputs across different domains. The success
rate is defined as the percentage of generated queries that
execute without errors.

« Grammarinator: We used Grammarinator with a seed of
5 short SQL queries, generating 10,000 inputs under the
configurations no generate. We measured the success rate
of executing these queries on the PostgreSQL database.

¢ SQLSmith: We generated 10,000 inputs using SQL-
Smith, filtering to keep only SELECT statements. The
success rate was computed based on the execution of
these queries on the PostgreSQL database.

« ExplainFuzz (PC + custom generator) For our custom
generator we sample 500 anonymized queries from the
PC. For each query, we generated 20 variations, ensuring
that the structure remained the same while varying tables,
columns, and numbers. We measured the success rate of
executing these queries on the PostgreSQL database.

Method Global success rate (%)
Grammarinator ~ 36.29
SQLSmith 41.73
ExplainFuzz 86.07
TABLE II

GLOBAL SUCCESS RATE FOR EACH METHOD.

¢) Global success Rate: Table [[I] shows the proportion
of successfully executed queries on PostgreSQL for each
method when generating 10,000 queries. ExplainFuzz sig-
nificantly outperforms both baseline methods, achieving an
execution success rate of approximately 86%, compared to
36% for Grammarinator and 42% for SQLSmith. This more
than doubles the success rate of the closest baseline. The
results validate our generation strategy: training a Probabilistic
Circuit (PC) on Grammarinator-generated data, combined with

a structure-aware generator, produces a high proportion of
syntactically and semantically valid inputs.

V. DISCUSSION

a) Trade-offs in PC-Based Fuzzing.: ExplainFuzz high-
lights a key trade-off between scalability and semantic pre-
cision. Anonymization simplifies circuit construction by re-
placing complex values (e.g., strings, identifiers) with place-
holders, enabling tractable inference. However, this sacrifices
value-level semantics and requires non-trivial post-processing
to generate executable inputs. Conversely, tokenization pre-
serves semantic detail by splitting values into subword units,
but dramatically increases grammar complexity, often making
circuit compilation infeasible for long inputs.

b) Data and Generalization Challenges.: Effective prob-
abilistic circuits depend on large, diverse input corpora to
generalize well—especially in domains with deep nesting
or optional constructs. Too little data leads to overfitting;
aggressive simplification risks omitting rare but important
patterns. Balancing coverage and complexity remains an open
challenge for robust structured fuzzing.

c) Limitations in Practice.: In domains like CloudFor-
mation and MLIR, we find that neither anonymization nor
tokenization alone fully supports scalable, semantically rich
modeling. Tokenization respects domain relationships but fails
to scale; anonymization scales but loses essential structure.
These results highlight the need for new approximations or
hybrid techniques to bridge this gap.

VI. FUTURE WORK

Future improvements to ExplainFuzz include relaxing
grammar-validity constraints through approximation tech-
niques to capture more semantic variation. We also aim to
integrate large language models (LLMs) into the concretization
phase, enabling generalization across domains without hand-
crafted generators. Finally, scaling the pipeline across multiple
GPUs could improve performance and support larger, more
complex grammars.

VII. CONCLUSION

We introduced ExplainFuzz, a framework for explainable
input generation that combines grammar refactoring, proba-
bilistic circuit learning, and domain-specific concretization.
Unlike traditional fuzzers, ExplainFuzz offers transparency and
control over input structure, enabling users to analyze and
guide test generation.

Experiments in the SQL domain show high validity and
efficiency, but also highlight the need for custom concretizers
per domain. While PC-based inference is domain-agnostic,
semantic validity still depends on tailored generation.

Overall, ExplainFuzz demonstrates the potential of
structure-aware, explainable fuzzing. Future directions
include structural approximation, LLM-based concretization,
and improved scalability via GPU parallelization.
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APPENDIX

a) NB : The code is also in a private repository on
GitHub, if needed, Annaelle can add the reader as a contributor
on each repository (there are 5 in total). The main link is :
https://github.com/annaellebgt/ExplainFuzz

Algorithm 1 Probabilistic circuit construction

Input: Grammar G in CNF, maximum length n, entry
symbol s;.
Output: Probabilistic circuit c.

Initialize empty circuit c.
for symbol s € symbols(G) do
for start i € [0..n — 1] do
for end j € [j..n] do
Add a sum node (s,1,j) to c.
for rule (s; < s2 s3) € rules(G) do
for start ¢ € [0..n — 2] do
for middle k£ € [i..n — 1] do
for end j € [k..n] do
Add a product node (s1, s2, 83,14, k,7) to ¢,
with (s2,4,k) and (ss, k, j) as children.
for product node (s,4,5) € c do
Add every sum node (s, _, _,4,_,j) as a child to (s, 1, j).
Add the root, a sum node with children (s1,0,_).
Prune every node in c that is not connected to the root.

(a) ANTLR-style (b) CNF-style grammar

grammar eq —ONE block | TWO block
eq : digit (PLUS digit)*; | eq block
digit : ONE | TWO; block —PLUS ONE | PLUS TWO
ONE : "l"; ONE —"1"
TWO : "2"; TWO —"2n"
PLUS : "+"; PLUS —" 4"
(c) Probabilistic Circuit
VY
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Fig. 5. (a) ANTLR-style grammar of simple arithmetic expressions and (b)

a refactored version in the CNF-style, and(c) the corresponding probabilistic
circuit (sequence length 5) built from the CNF grammar.
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« Complete Evidence (EVI): What is the probability of
seeing of seeing a specific input?
« Marginals (MAR):

1.

ii.

What is the probability of token t appearing in an
input?

What is the probability of a contiguous sequence of
tokens (t1, ta, ...t,,) appearing at position p of an input?

« Conditionals (COND):

i

ii.

iii.

. What is the probability of token t2 appearing after

token t17?

What is the probability of token t2 appearing immedi-
ately after token tl, given that we saw tl at position
p?

What is the probability of a token t appearing in a
query after a given sequence, given that we saw the
contiguous sequence of tokens (¢1, ¢, ...t,) at position
p in an input?

« Marginal maximum a posteriori (MMAP):

i.

ii.

What is the most likely token appearing anywhere after
a token t ?

What is the most likely token appearing right after
token tl given we saw the token tl at position p ?

Fig. 6. The possible queries for each class of query.

ExplainFuzz

Choose Domain

Mode:

SQL B REDIS JANUS generate no-generate
% Inference Que ¢ Input Generator
Query Type Question
Marginal Conditional Marginal Map Direct Evidence P(Literal 2 | Literal 1), where Literal 2 appears anywhere after Literal 1
Literal 1 Literal 2
FROM v WHERE

Get Probability

Label

P(WHERE|FROM)=0.9580

Fig. 7. User Interface (Inference query section)
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