Kernel

Wednesday, January 11, 2023 5:17 PM

Minimum interface required to run programs on a
machine.

Key Ideas:
- Abstraction: What is the desired illusion

- Mechanism: How to create the illusion, fixed method
- Policy: Which way to use mechanism to meet a goal

CSE 120 Page 1



Process

Monday, January 9, 2023 2:03PM

Def: Abstraction of a running program.

Resources of a process:
- CPU: Executes instructions
- Memory: Stores state

Context of a process:
- CPU context: values of registers
- Memory context:
- Kernel State

(PC,

SP,
pointers to memory areas

FP,
(Text,

Process Memory Structure

GP)
Data,

0
* Text
Text
— Code: program instructions
* Data
Data
— Global variables
— Heap (dynamic allocation) f L////’,,, _
o G
* Stack s @

— Activation records
— Automatic growth/shrinkage

Goal:

CSE 120 Page 2

Support multiple processes simultaneously

Is dynamic and has state which changes.

Heap, Stack)

Process Stack

¢ Stack of activation records |sp

— One per pending procedure
* An activation record may store
— where to return to
— link to previous record
— automatic (local) variables
— other (e.g., register values)

* Stack pointer points to top

R

7

S

L

return address
previous record

local var 1

local var n

return address
previous record

local var 1

local varn




Multiprogramming, Context Switching

Wednesday, January 11, 2023 5:19 PM

Multiprogramming:

* Given a running process
— At some point, it needs a resource, e.g., |/O device
— Say resource is busy, process can’t proceed
— So, “voluntarily” gives up CPU to another process

* Yield (p)

— Let process p run (voluntarily give up CPU to p)
— Requires context switching

Context Switching:

* Allocating CPU from one process to another

— First, save context of currently running process

— Next, restore (load) context of next process to run
* Loading the context

— Load general registers, stack pointer, etc.

— Load program counter (must be last instruction!)

Simple context switching example:

CSE 120 Page 3



 Two processes: Aand B
e A calls Yield(B) to voluntarily give up CPU to B
e Save and restore registers

— General-purpose, stack pointer, program counter
* Switch text and data
* Switch stacks

— Note that PCis in the middle of Yield!
N Geer context switch: syscall -> vield() -> TRAP instruction

0 Trap instruction: indicates to CPU that it will suddenly switch to kernel space
- Kernel context switch: clock interrupt -> preemptive scheduling

CSE 120 Page 4



Yielding via Kernel
Wednesday, January 11, 2023 6:11 PM

Saving process A to Kernel Space

Process A Process B
g Text Text é
¥ PC
Yield (B)
SP
Data ta
Stack Sthck
User space
daeas, ikl Kernel space
{ magic = 0;
SaveContext (me);
® if magic == 1 return; Kernel Text
else magic = 1; A.context
RestoreContext (p): PC
} SP
B.context Kernel Data
PC
SP
p: B [Yield] Kernel Stack A Kernel StackB| .. . (vicia

Restoring process B from Kernel Space

CSE 120 Page 5



After Restoring Context of B

Process A Process B
Text Text
, PC
Yield (A)
SP
Data ata
| Stack Stack
User space
ield. lo) Kernel space
{ magic = 0;
SaveContext (me);
® if magic == 1 return; Kernel Text
else magic = 1; A.context
RestoreContext (p); PC
} SP
5 Kernel Data
PC
SP

Kernel Stack A Kernel Stack B[ . & (vie1q)

CSE 120 Page 6



Timesharing, Process State Diagram

Wednesday, January 18, 2023 5:05 PM

Def: Divide CPU time into parts and allocating to processes
Idea: Create the illusion of parallel progress by rapidly switching CPU

Note: Kernel must keep track of each process' progress

Kernel Maintains List of Processes

Process ID State Other info

1534 Ready Saved context, ...

34 Running Memory areas used, ...
487 Ready Saved context, ...

9 Blocked Condition to unblock, ...

* All processes: unique names (IDs) and states

* Other info kernel needs for managing system
— contents of CPU contexts
— areas of memory being used

— reasons for being blocked
- Running: making progress, using CPU
- Ready: able to make process, not using CPU
- Blocked: not able to make progress, can't use CPU - blocked by some resource (ie. IO)

Kernel selects a ready process and lets it run
Eventually the kernel regains control, and then selects a new process

Process State Diagram

_"\ dispatch /_

Ready ) \ Running |
preempt \_%___ ,,/

wake up /’“" sleep
' BIocked\

N

 State transitions
— Dispatch: allocate the CPU to a process
— Preempt: take away CPU from process
— Sleep: process gives up CPU to wait for event
— Wakeup: event occurred, make process ready

CSE 120 Page 7



Threads

Wednesday, January 18, 2023 5:59 PM
Def: Single sequential path of execution, independent of memory

- Threads are part of a process

0 Lives in the memory of a process

0 Allows multiple threads per process

0 Threads share text and heap, but have their own stack
- Advantage to Users: unit of parallelism
- Advantage to Kernel: unit of schedulable execution

Implementation: Call ForkThread()
- Management:
0 Thread context switching
0 Thread scheduling

Process 1 Process 2 Process n

5 Text §§ ? Text § § Text

Data Data eee Data
f
T P St a ck 1 f
"'ft'f/fff/gl;’gtc'f;ffgff/f/fffi Stack 2 StaCk 1
fork () read () |\ rite () Text Swit:hr;;e:igc;:;z’:uling 5witc1?;§aadn§051f£uling

I/f/}l/}lflf)I)II/}“I/II/IJ'I Stack 1
f.fffffflflffkffffflfflflfl g g g Stack 1
Stack 3 Stack 2

Idea: we can allow users to manage threads, include a thread library
- Thread calls at the user level: ForkThread (), YieldThread()
- Supports threads on any platform, but no true parallelism

CSE 120 Page 8



* User-level threads
— Portability: works on any kernel
— Efficient: thread-switching occurs in user space
— User can decide on scheduling policy
— But no true parallelism (without special support)

* Kernel-level threads
— Can achieve true parallelism
— Overhead: thread switch requires kernel call

- Hardware-level Thread

O Actual hardware support
0 Logical CPU

CSE 120 Page 9



Scheduling Policies
Monday, January 23, 2023 6:44 PM

Problem: Which processes get CPU and when

Def:
- Arrival time: time that process is created
- Service time: CPU time needed to complete
- Turnaround time: difference from arrival to departure

- Preemptive: kernel takes away CPU from a process through interrupts
- Starvation: process may never get CPU

Longest First: select process with the longest service time

Shortest First: select process with the shortest service time
- Provably optimal

Note: Longest/Shortest first MUST know the service time of the processes, which is not easily doable

FIFO / First Come First Serve: select processes in order of arrival
- Non-preemptive, simple, no starvation

Round Robin: Each process gets CPU in turn
- Preemptive, simple, no starvation

Shortest Process Next: select process with shortest service time
- Non-preemptive, assumes known service time, allows starvation

Multi-Level Feedback Queues:

- Priority queues: 0 (high), .., N (low)
- New processes enter queue 0
- Select from highest priority queue
- Run for T = 2"k quantums

0 Used T: move to next lower queue, FIFO -

0 Used < T: back to same queue, RR

" Due to yield or higher priority arrival

- Periodically boost (e.g., all to highest queue)
- Preemptive, complex, possible starvation

Priority: Pick the process with highest priority
- Allows scheduling based on external criteria
- Might have starvation

Fair Share: Give CPU utilization equal to requested amount over the long run
- Each process requests some percentage CPU utilization

50% 33% 40%
B 0% S0P 33%  25% 20% 17% 14% 13% 11% 10%

c 0% 0% 5% [l 33% 38% 40%
» Each process requests some CPU utilization

— Utilization: what percentage of time resource is used
— Example of requests: A: 50%; B: 10%; C: 40%

- Select process with least action/requested ratio
- Too much overhead, requires a division for each process

Stride Scheduling:

CSE 120 Page 10



For processes A, B, C ... with requests R,, Rg, Rc ...
Calculate strides: S, = 1/R,, S; = 1/Rg, Sc = 1/R¢ ...
For each process x, maintain pass value P, (init 0)

Schedule: repeat every quantum

— Select process x with minimum pass value P,, run

— Increment pass value by stride value: P, =P, +S,
Optimization: use only integers for R,, S, and P,
— Calculate S, = L/R, using very large L, e.g., L = 100000

CSE 120 Page 11



Real Time Scheduling

Monday, January 30, 2023 6:28 PM

Problem: correctness of real time systems depend on correctness of computation and timing of results
- If a result is delivered after a deadline, it is considered incorrect

Hard: Every deadline must be met otherwise something catastrophic happens, ex: nuclear power plant
- Every deadline MUST be met
Soft: Missed deadlines are ok, ex: video delivery

Periodic: Does something, then waits for the next period of time
Period (T): each periodic cycle, each process must complete before this period
CPU burst (C): every period, each process must get some amount of CPU time
Utilization = C/T

Earliest Deadline First: Schedule the process with the earliest deadline
- If earlier deadline occurs, preempt
- Works for periodic and aperiodic processes
- Achieves 100% utilization
- MUST SORT DEADLINES, can be slow
- If sum of utilization <= 100%, will meet all deadlines

Rate Monotonic Scheduling: Only for periodic processes, prioritize based on rates
- At start of period, select highest priority
- Preempt is necessary
- If all processes are finished, wait until the next deadline
- If sum(utilization) <= n*(2”(1/n) - 1) where n is the number of processes then it will pass
O Not necessarily fail if this does not hold

CSE 120 Page 12



Synchronization

Monday, January 30, 2023 7:33 PM

Avoid race conditions, where processes will modify the same resource at the same time

Ex: two processes modify variable money
Pl: money += 100
P2: money -= 100

If both processes make a copy of money at the same time, then when they try to return, there will be ambiguity

- Identify critical sections of code
- Enforce mutual exclusion, only one process active in a critical section
0 Can achieve mutual exclusion by restricting only one process to be in its critical section at any time

Solution Requirements:

1. At most one critical section at a time

2. Can't prevent entry if no others are in theirs
3. Should eventually be able to enter

4. No assumptions about CPU speed or number

Software Lock:

- Use a "shared variable" (between processes)
shared int lock = OQPEN;

P, P,

while (lock == CLOSED); while (lock == CLOSED) ;
lock = CLOSED; lock = CLOSED;

< critical section > < critical section >
lock = OPEN; lock = OPEN;

Lock indicates if any process in critical section

- If an interrupt happens just after Pl enters the while loop, then it can enter the critical section upon resume
which breaks #1, since both Pl and PO are now in the critical section

Taking Turns:

shared int turn = 0; // arbitrary set to P,
PO Pl

while (turn != 0); while (turn != 1);

< critical section > < critical section >
turn = 1; turn = 0;

Alternate which process enters critical section

- If turn = 0, but Pl is running (ie context switch occurred), then Pl is prevented entry and may never enter
which breaks #2 #3

State Intention

shared boolean intent([2] = {FALSE, FALSE};

P, P,

intent[0] = TRUE; intent[1] = TRUE;
while (intent[1]);: while (intent[0]);

< critical section > < critical section >
intent[0] = FALSE; intent[1] = FALSE;

Process states intent to enter critical section

- If PO sets intent[0], then context switch to Pl and sets intent[1l], then

neither process can escape the while
loop

Peterson's Solution

CSE 120 Page 13



shared int turn;

shared boolean intent([2] = {FALSE, FALSE};

P, B

intent[0] = TRUE; intent([1] = TRUE;

turn =i turn = 0;

while (intent[l] && turn==1); while (intent[0] && turn==0);

< critical section >

intent[0] = FALSE;

< critical section >

intent[l] = FALSE;

* If competition, take turns; otherwise, enter

- Use both intention and turn variables

Disabling Interrupts

- Need to disable interrupts for each CPU individually,

might have an

CSE 120 Page 14

interrupt in the middle



TSL Instruction

Wednesday, February 1, 2023 7:11 PM

TSL mem (test-and-set lock: contents of mem)
do atomically (i.e., locking the memory bus)
[ test 1if mem == 0 AND set mem = 1 ]

Operations occur without interruption
— Memory bus is locked
— Not affected by hardware interrupts

Solution: avoid interrupt issues using the TSL
instruction
shared int lock = 0;

P0 P1

while (! TSL(&lock)): while (! TSL(&lock)):
< eritical section > < eritical section >
lock = 0; lock = 0;

Shared variable solution using TSL(int *)
— tests if lock == 0 (if so, will return 1; else 0)
— before returning, sets lock to 1

Simple, works for any number of processes
Still “suffers” from busy waiting

CSE 120 Page 15



Semaphores

Wednesday, February 1, 2023 7:20 PM

Def: Synchronization variable
- Integer values
- Can cause process to block/unblock when modifying
- Cannot test the value of semaphore

Operations:

- wait (s) - decrement; block if s < 0

- signal(s) - increment; if any blocked, unblock one
Notes:

- Only for synchronization use, cannot learn anything about another process because no information is transferred
- Still has some busy waiting within the semaphore implementation, but is relatively smaller than other solutions

Solution:
sem mutex = 1; // declare and initialize
By By
wait (mutex); wait (mutex);
< critical section > < critical section >
signal (mutex); signal (mutex):;

Use “mutex” semaphore, initialized to 1
Only one process can enter critical section
Simple, works for n processes

Implementation:
Semaphore s = [n, L]
— n: takes on integer values
— L: list of processes blocked on s

Operations

wait (sem s) {
s.n = s8.n — 1;
if (s.n < 0) add calling process to S.L and block; }

signal (sem s) {
s.n = s.n + 1;
if (s.L lempty) remove/unblock a process from s.L; }
wait and signal MUST BE ATOMIC!!! Use a lower level mechanism to implement wait and signal.

CSE 120 Page 16



Process Ordering

Wednesday, February 1, 2023 7:32 PM

Another use for semaphores:

Order How Processes Execute

sem cond = 0;

Py P,

< to be done before P, > wait (cond);

signal (cond); < to be done after P, >

Cause a process to wait for another
Use semaphore indicating condition; initially O
— the condition in this case: “P, has completed”

Used for ordering processes
— In contrast to mutual exclusion

CSE 120 Page 17



Inter—-Process Communication

Wednesday, February 8, 2023 6:45 PM

IPC requires mechanisms for:
- Data transfer
- Synchronization

Shared memory + semaphores

shared int buf([N], in = 0, out = 0;
sem filledslots = 0, emptyslots = N, pmutex=1l, cmutex=1l;
Producerl, 2, Consumerl, 2, ..
while (TRUE) { while (TRUE) {
wait (emptyslots); wait (filledslots);
wait (pmutex); wait (cmutex);
buflin] = Produce (); Consume (bufoutl]);
in = (in + 1)%N; out = (out + 1)%N;
signal (pmutex); signal (cmutex);
signal (filledslots); signal (emptyslots);
} }
Monitors:

- Programming language construct for IPC
0 Variables (shared) requiring controlled access
0 Accessed via procedures (mutual exclusion)
0 Condition variables (general synchronizaé6on)
" wait (cond):

" signal (cond):

- Only one process can be active inside monitor
running or able to run;

o Active

others must wait

Message passing

send (dest, &message) receive

(src, &message)

Py

kernel

* Two methods

— send (destination, &message)

&message)
* Data transfer: in to and out of kernel message buffers

* Synchronization: receive blocks to wait for message

— receive (source,

CSE 120 Page 18

block until another process signals cond
unblock a process waiting on cond

Issues with Message Passing

Who should messages be addressed to?

— ports (“mailboxes”) rather than processes
How to make process receive from anyone?
—pid (*,

Kernel buffering: outstanding messages

receive

&message)

— messages sent that haven’t been received yet
Good paradigm for IPC over networks
Safer than shared memory paradigms



Deadlock

Monday, February 13, 2023 7:25 PM

Def: Deadlock
Set of processes are permanently blocked

— Unblocking of one relies on progress of another
— But none can make progress!

Example ‘ L waiting
— Processes A and B holding for

— Resources Xand Y o
— A holding X, waiting for Y ,itinp » holding
— B holding Y, waiting for X for

— Each is waiting for the other; will wait forever

Four conditions for deadlock:

1) Mutual exclusion: only one process can use a resource at a time

2) Hold and wait: process holds resource while waiting for another (ie hold memory and request more memory)
3) No preemption: can't take resource away from a process

4) Circular wait: the waiting processes form a cycle

Solutions:
- Prevention: make deadlock impossible by removing condition
1) Mutual exclusion: Some resources may not be easily shared
2) Hold and wait: Not all processes know the amount of resources beforehand
3) No preemption: processes may be in the middle of using resources
4) Circular wait:
- Avoidance: Avoid situations that lead to deadlock
0 Bankers Algorithm
" Process claim matrix: how much of each resource a process will use at most
" Process allocation matrix: how much of each resource a process is currently using
" Resource availability vector: which resources are available
" Keep system in a safe state, where there is an order of execution to escape any deadlock
- Detection and Recovery
0 Do nothing to prevent/avoid deadlocks
* So something if/when they happen
o Justification:
" Deadlocks rarely happen
" Cost of prevention or avoidance not worth it
Most popular approach
Detecting deadlocks:
" Detect a cycle in resource requirements
0 Recovery:
" Break the cycle
O Terminate all deadlocked processes
O Terminate processes one at a time
" Potentially causes issues with resources in intermediate state (files half written)

O O

CSE 120 Page 19



Memory

Wednesday, February 22, 2023 7:05 PM

Where should process memories be placed?
- Memory management

How does the compiler model memory?
- Logical memory
- Segmentation

How to deal with limited physical memory?

- Virtual memory
- Paging

CSE 120 Page 20



Process Memory

Wednesday, February 22, 2023 6:24 PM

Process Memory:
- Text: code of program
- Data: static variables, heap
- Stack: Automatic variables, activation records
- Shared memory regoins

Characteristics: size (fixed or variable), Permissions (r,w,X)

Address space:

Address space 0
— Set of addresses to access memory Text
— Typically, linear and sequential X
— 0 to N-1 (for size N) Data

For process memory of size N x+v
— Text (of size X) at 0 to X-1

— Data (of size Y) at X to X+Y-1 N-Z
— Stack (of size Z) at N-Z to N-1 Stack

CSE 120 Page 21



Memory Management, Fragmentation
Wednesday, February 22, 2023 6:45 PM

Problem: how to allocate and free portions of memory
- Allocation occurs when: processes created or request more memory
- Free occurs when: process exits, process no longer requires memory requested

Solution:

- Physical memory starts as one empty “hole”

- Over time, areas get allocated: “blocks”

- To allocate memory - Find large enough hole
0 Allocate block within hole
0 Typically, leaves (smaller) hole

- When no longer needed, release
O Creates a hole, coalesce with adjacent

Problem: How to select the best hole?

First fit: select the first hole that fits the block
- Simple and fast

Next fit: select the next available hole that fits the block
- Simpler and faster

Best fit: selects the smallest hole that fits the block
- Must check every hole (slow)
- Leaves very small fragments

Worst fit: selects the largest hole
- Must check every hole (slow)
- Leaves very large fragments

Problem: fragmentation, where lots of small holes are scattered everywhere
- Internal fragmentation: unused space within allocated block, cannot be allocated to others
- External fragmentation: unused space outside any blocks, can be allocated

Compaction: Reallocate processes so that a larger holes can be created
- Simple but very time consuming

Subblock: Break block into smaller sub blocks and fit into smaller holes, filling fragments
- Easier to fit and faster but complex

CSE 120 Page 22



50% Rule, Unused Memory Rule

Monday, February 27, 2023 6:39 PM

Def: 50% rule
- Holes = 1/2 * Blocks

Note holes are always external fragmentation

Def: Unused Memory Rule:
-f =%/ (k+2)
- k = h/b - average hole to block size
- As k -> infinity, then £ -> 1
- As k -=> 0, then £ -> 0

CSE 120 Page 23



Buddy System

Monday, February 27, 2023 6:56 PM
Problem: variable size allocations cause external fragmentation

Idea: have a few preselected sizes
- One size: inflexible, may be too small or large
- A good variety of sizes: flexible but more complex

Solution: Buddy system
Partition into power-of-2 size chunks

Alloc: given request for size r

find chunk of size 2 r (else return failure)
while (r £ sizeof (chunk)/2)

divide chunk into 2 buddies (each 1/2 size)
allocate the chunk

Free: free the chunk and coalesce with buddy

free the chunk
while (buddy is also free)

coalesce
Ex:

CSE 120 Page 24



AllocC  FreeB  FreeA
1.5 MB

Alloc

Alloc

1.2 MB

900 KB

ii)

A
A?/% C%

0]
e
fﬁﬂt




Logical Memory

Wednesday, March 1, 2023 6:31 PM

Logical memory: a process' memory as referenced by a process
- Allocated without regard to physical memory

Problems with sharing memory:
- Addressing: unknown where process will be allocated
- Protection: prevent process from modifying another
- Space: how to distribute finite memory to many processes

Address Space: Set of addresses for memory, usually linear
- Typically kernel occupies the lowest address

Local addresses: assumes separate memory starting at O
- Compiler generated
- Independent of location in physical memory
Converting logical to physical addresses:

Software: Compiler sets the offset at compile time

Hardware:

0 Addressing: Base register filled with start address, added to logical address on access
0 Protection: use a bound register to ensure process does not go out of bounds

Organizing Physical Address Space:
- Segmented: divide into segments of different sizes
0 Segment translate table: remembers the starting address of each segment
= V: valid bit
" Base: segment location
®* Bound: segment size
®* Perm: permissions
o0 Add offset + base to find the physical address
0 Also hold entries for bounds and permission
O One segment table per process stored in kernel
- Paged: Partition into pages of fixed size
0 Keep table mapping pages in logical to pages in physical, one per process
= V: valid bit
®* Demand paging bits
" Frame: page location
0 Convert top n bits of logical to top n bits of physical and keep the offset

CSE 120 Page 26



Monday, March 6, 2023 6:39 PM

Combining Segmentation and Paging:

Logical memory LM PM

Segment  Page

— composed of segments -] Table  Tables
)
|

>

Each segment i 1
— composed of pages _

Segment table

Sl

|

— Maps each segment to a page table

i)

Page tables
— Maps each page to physical page frames

Address translation:
- Logical address: [segment s, page p, offset 1]
- Do various checks: s < STSR, valid == 1, p < bound, permissions
- Use s to index segment table to get page table
- Use p to index page table to get frame f
- Physical address = concatenate (f, 1)

Logical Address

Segment s Page p Offset i
V|Base|Bound‘“. Page table
of segment

—|V|DPB| Frame | .. 4@9

Physical Address e | -

CSE 120 Page 27



Cost: Each lookup is a memory access
- Keep commonly accessed pages in fast memory
- Leverage space locality

TLB: Translation Look-aside Buffer

Page p or [segment s, page p] Offset i
]
! “key” frame
v
Frame f Offset i

Fast memory keeps most recent translations
If key matches, get frame number
else wait for normal translation (in parallel)

CSE 120 Page 28



Virtual Memory
Monday, March 6, 2023 7:14 PM

Def: Virtual memory is a logical memory except not all memory may be store in physical memory
- Keep most of process memory is kept in disk, which is larger and cheaper
- Unit of memory is segment or page

Idea: Treat physical memory as a cache of commonly used segments or pages
- If a page access 1s not in memory, throw a page fault

Page fault handling: TRAP into kernel
- Find page on disk (kept in kernel data structure)
- Read page into free frame (may need to replace)
- Record frame number into page entry table
- Set valid bit and other fields
- Retry instruction

Problem: Disk is slow, 5 - 6 orders of magnitude slower
- Ensure page faults are rare

Page Replacement: What page to replace with a new page?
- FIFO: replace the page that is the oldest
O Simple: use frame ordering
0 Does not perform well, oldest page may be the most popular
- OPT: select page to be used furthest in the future
0 Optimal but requires future knowledge
0 Establishes best case
- LRU: select page that was least recently used
0 Predict future based on past
0 Costly, need to time stamp each page access, find least
- Clock algorithm:
0 add reference bit associated with each frame
when frame is filled set bit to 0 by 0OS
if frame is accessed set bit to 1 by hardware
Arrange all frames in a circle
Pointer to next frame to consider replacing
" Tf ref = 0, replace this frame
" Else set bit to O
®* Advance clock hand and repeat until a frame is found

(e]
(0]
(0]
(0]

Which is better?:

OPT = LRU =0 ClIOCKEE=ZE 81 1R ©)

Resident Set: process' pages in memory
- Local: limit frame selection to requesting process
- Global: select and frame from any process

Working Set: what are the most important pages
Working set: W(t, A)
— Pages referenced during last delta (process time)
Process given frames to hold working set
Add/remove pages according to W(t, A)

If working set doesn’t fit, swap process out

CSE 120 Page 29



Files and File System

Monday, March 13, 2023

File:

Goals:
- Archival storage:

6:32 PM

logical unit of storage, container of data
- Accessed by <name, region within file>

- Support various storage technologies

- Best achieve / balance: performance, reliability,

File System:

a structured collection of files

Access control - who is allowed access?

keep forever including previous versions

security

Name Space - how 1s the name of the file structured (path)
Persistent storage - how is the data physically stored
Abstraction:

O Objects are data, programs, for system or users

0 Objects referenced by name, to be read/written

O Persistent - remains "forever"

0 Large - "unlimited" size

0 Sharing and control access

O Security: protecting information
Objects:

O Anything that can be accessed by name

0 Can be read or written

O Can be protected

0 Can be shared

0 Can be locked

0 IE: IO devices (disk, keyboard, display), Process memory

CSE 120 Page 30



Hierarchical Namespace, File Model

Monday, March 13, 2023 6:44 PM

Name space organized as a tree
- Name has components, branches start from root
- No size restrictions
- Intuitive for users

IE: UNIX "path names"
- Absolute: /a/b/c
- Relative b/c relative to /a
- Not strictly a tree: links

File attributes:
- Type (user or system)
- Times: creation, accessed, modified
- Sizes: current size, maximum size
- Permissions

File Operations:
- Create, delete
- Prepare for access: open, close, mmap
- Access: read, write
- Search: move to location
- Attributes: get, set (permissions)
- Mutual exclusion: lock, unlock
- Name management: rename

CSE 120 Page 31

a///\\\b
N ASYY
7N\



Read/Write Model, Memory Mapped Model, Access

Model

Monday, March 13, 2023 7:03 PM

Read/Write Model: read/write COPY of file in memory

fd= open(filename, mode) : opens the file, returns the file descriptor
nr = read(fd, data buffer, data size) : read from the file and store to the buffer,
nw = write(fd, buf, size) : write to the file from the buffer, returns the

close (fd) : close the file
Memory Mapped Model:

addr = mmap (fd, NULL, n) : loads the fd into array
addr [index]

Problem: how is the file actually updated?
Access Model: How are files shared to varying degrees
- Who can access control?

- What operations are allowed

UNIX: r/w/x permissions for owner, group and everyone

CSE 120 Page 32

returns the actual amount read



Storage Abstraction

Monday, March 13, 2023 7:30 PM

Idea: Use blocks to hide complexity of device
- Model storage as array of blocks of data
- Randomly addressable by block number

- Typical block size: 1kB,

Simple interface:

- read(block num, mem addr)
- write (block num, mem addr)

Disk regions:

- File System Metadata -

4kB - 64kB

0 Information about the file system

0 Files metadata in use,
o Data blocks in use,

- File Metadata: file control blocks
o0 Information about a file

= Attributes: type of file,

0 References to data blocks
= Contiguous blocks: pointer to the first block and size of sequence
" Groups of contiguous blocks:

" Non-contiguous blocks:

free entries
free entries

size, permissions

store multiple sequences of contiguous blocks

each block individually named

0 Unix:
Data
» Blocks
— __
- ::Ptrs to
Block , Data
block
Map > Ptrs to | e
s > Single  Single Indirect
" Indirect
> Ptrsto |, Blocks Assuming 1KB b.focks, 4-byte pointers
R > Double  Double Indirect _ Direct: 10 x 1KB = 10KB
— Indirect Single Indirect: 256 x 1KB = 256KB
| Double Indirect: 256 x 256 x 1KB = 64MB
i, Blocks

Triple Indirect

Triple Indirect: 256 x 256 x 256 x 1KB = 16GB
Total: (10 + 256 + 256° + 256°) x 1KB = 16+GB

- Keeping track of free blocks:
0 Free block map: pointer to free block and size of free span

0 Doubly linked list

0 Bit map: set bit to 1 if block is occupied
- Data Blocks - file contents

CSE 120 Page 33



