
Probabilistic Polynomial Time
PPT: Probabilistic Polynomial Time

A language L is BPP (bounded from half probabilistic polynomial time) if
∃M ∈ PPT s.t.

∀x ∈ LPr[M(x) = 1] > 2
3

∀x ̸∈ LPr[M(x) = 0] < 1
3

We can run the machine M many times and output the majority of results.

Chernoff Bound
Let x1...xn be independent random variables with identical probability distribu-
tion 0 ≤ P ≤ 1.

Let Y =
∑

x then Pr[|Y − E(Y )| > δ ∗ n] < 2 ∗ e− δ2∗n
2 .

Chebyshev Bound
Let x1...xn be pariwise-independent random variables with identical probability
distribution 0 ≤ P ≤ 1.

Let Y =
∑

x then Pr[|Y − E(Y )| > δ ∗ n] < 1
4∗δ2∗n

Neglible Function
A function f is neglible if:

∀c, ∃Nc s.t. ∀n ≥ Nc : f(n) < 1
nc

Dot Product
< a · b >= (

∑
xi ∗ pi) mod 2 (bitmask a using mask b then reduction XOR)

One-Way Function
Informally

• Easy (polynomial-time) to compute
• Hard to invert

Formally

1) Challenger generages random x with length k, computes f(x), and sends
to Adversary
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2) Adversary attempts to compute in polynomial-time x and makes guess y
3) Adversary wins if f(x) = f(y)

As k increases, probability of A winning is a negligible function

∀c, ∀A ∈ PPT, ∃Ncs.t.∀|x| > Nc : Pr[A(f(x)) ∈ f−1(f(x))] < 1
|x|c

Hard-Core Bits
Suppose f is a one-way function. Suppose y = f(x) and pick p.

If f is a one-way function, then calculating < x · p > is easy but finding <
y · p >=< x · p > is hard. Formally:

f is one-way → Pr[A(f(x), p) =< x · p >] < 1
2 + ϵ

Therefore dot-product is a hard-core bit for any one way functions

Proof of Hard-Core Bits

By contrapositive, if an inverter exists for a hard-core bit, then it can invert the
one-way function. Formally:

Pr[A(f(x), p) =< x · p >] > 1
2 + ϵ → A inverts f

Define A(f(x), p) =< x · p >= A predicts < x · p >

Trivial Case

Suppose that adversary A predicts < x · p > with certainty. We can construct
many p = (0...1...0) which extracts a certain bit in x. We only need to do this
for each bit in x.

Special Case

Suppose that adversary A predicts < x · p > with probability more than 3
4 + ϵ.

Pick p as a random string, then flip the ith bit to generate p′. If A is correct
both times, then < x · p > ⊕ < x · p′ >= xi which occurs with probabilty slightly
mroe than 50%. Therefore we can run this many times and take the majority.

General Case

Suppose that adversary A predicts < x · p > with probability more than 1
2 + ϵ.

Define Good = {x|Pr[A predicts < x · p >] > 1
2 + ϵ

2 }. We claim that at least ϵ
2

x’s are in Good.

Therefore:

Pr[A predicts < x · p >] ≤
Pr[A predicts < x · p > |x ∈ Good] ∗ Pr[x ∈ Good] +
Pr[A predicts < x · p > |x ̸∈ Good] ∗ Pr[x ̸∈ Good]
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We note that by definition:

Pr[A predicts < x · p > |x ∈ Good] = 1
Pr[x ∈ Good] = ϵ

2 , \ Pr[A predicts < x · p > |x ̸∈ Good]
Pr[A predicts < x · p > |x ̸∈ Good] = 1

2
Pr[x ∈ Good] = ϵ

2 , Pr[A predicts < x · p > |x ̸∈ Good] = 1

Therefore Pr[A predicts < x · p >] ≤ 1
2 + ϵ

2 . This is a contradiction with our
original assumption that A predicts < x · p > with probability more than 1

2 .

We can then create A to invert f by picking p1...pc∗log(n) and guessing b1 =<
p1 · x > ...bc∗log(n) =< pc∗log(n) · x >. The probability that all b’s are guessed
correctly is 1

nc . Compute P = xor of all possible combinations of p’s and B =
xor of all possible combinations of b’s. Note that P and B must be correct with
probability 1

nc and are pairwise independent. For some fresh < x · p > we can
calculate ith bit of x: xi = majority(A(pi

k, xi)⊕ bk). We can check which p result
in correct guesses, and the probability of getting x wrong decreases as a Chernoff
bound.

Commitment Protocols
We want to commit some information without revealing the information, and
we want a commitment to be binding without being able to change what was
committed. We want to guarantee binding and hiding.

Binding: Sender cannot change their commitment after it is sent.

Hiding: Reciever learns nothing about the value of the commitment until it is
uncommitted.

Committment Protocol using One-Way Permuta-
tion
We can construct a commitment protocol with security paramter k using a
one-way function f that is a permutation (1-1 and onto). To commit a bit b,
pick random x, p and send f(x), p, < x · p > ⊕b. To decommit, sender can send
x.

Binding: Perfect

Hiding: Computational

Pseudorandom Generator
Define PRG(s) → y for some small seed |x| = k outputs a large random y which
is indistinguishable from random.
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y is random if there does not exist M ∈ PPT such that it can predict that a y
was generated by real random or PRG with probabilty greater than negligible.

Samplable Distributuions
A distribution D is samplable if ∃S ∈ PPT, ∀x, Pr[x] = Pr(S → x).

Indistinguishable
Two samplable distributions X, Y are polynomial time indistinguisable if ∀c∀J ∈
PPT, ∃Nc s.t. ∀n > Nc:

|(PrX [J(x ∈ X)] = 1) − (PrY [J(y ∈ Y ) = 1)]| < 1
nc

The difference in probabilities between whether J predicts 1 over the distributions
X and Y are within marginal difference.

Next Bit Test
A PRG passes the Next Bit Test if a J ∈ PPT which recieves a stream of PRG
bits can guess the next bit with probability less than 1

2 + ϵ.

Proving Indistinguishable → Passes Next Bit Test
If a J can distinguish a series of samples of random distributions X, Y with
probability ϵ, then it can distinguish a single sample with probability ϵ

m .

Assume that there exists some J ′ such that

|(PrX [J ′(x1...xn ∈ X)] = 1) − (PrY [J ′(y1...yn ∈ Y ) = 1)]| > ϵ(n)

Consider “hybrids” Pj where the first j samples come from Y and the remaining
samples come from X

P0 = PrX,Y (T ′(x1, x2, ...xn))
P1 = PrX,Y (T ′(y1, x2, ...xn))
P2 = PrX,Y (T ′(y1, y2, ...xn))
...
Pk = PrX,Y (T ′(x1, x2, ...xn))

Therefore P0−Pk > ϵ(n) and P0+(−P1+P1−P2+P2...−Pk−1+Pk−1−Pk) > ϵ(n)
(P0 − P1) + (P1 − P2) + ... + (Pk−1 − Pk) > ϵ(n)

Because P0 − Pk > ϵ(n) and there are k terms, then there must be some
Pj−1 − Pj > ϵ(n)

k .

We can guess the value of j for which this is true. Then for each bit starting
at k, we can guess a random bit and ask the judge whether it thinks it is more
likely to be random or PRG. We can then use this to predict the next bit of the
PRG. Therefore Indisguinshibility → Next Bit Test
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Proving Passes Next Bit Test → Indistinguishable
Extending seed by 1 bit: Given a 1-way permutation f , then PRG(x, p) →
f(x), p, < x · p >, we have extended 2n → 2n + 1

Extending seed by n bits: We define the next bit test, where a PRG sends
next random bits at a time to J and J predicts with probability < 1

2 + ϵ.

We show that a PRG secure against the Next Bit Test → Indistinguishability.
Assume f is a one-way permutation, then

PRG(x, p) = (f(x) → x1, < x · p >) → (f(x1) → x2, < x1 · p >) → ... →
(f(xn−1) → xn, p)

and output (p, < xn · p >, < xn−1 · p >, ..., < x1 · p >). If J is able to predict the
next bit, which is a hard-core bit of f , then it must be able to invert f .

Using PRG as a Commitment Protocol
Given a PRG : {0, 1}n → {0, 1}3n that is indistinguishable and bit b that
committer wants to commit to reciever. The reciever sends a random value Y
where |Y | = 3n. The commiter picks random seed s and computes PRG(s) = X,
if b = 0 then committer sends X, otherwise committer sends X ⊕ Y . To open,
send s.

Hiding: If the reciever can distinguish X and X ⊕Y , then reciever can distinguish
pseudorandom from random.

Binding: Suppose there are s1, s2 → PRG → x1, x2 such that x1 ⊕ x2 = Y . If
the committer wants to open a 0, committer sends s1, otherwise send s2. For
some Y that the reciever picks, there are 22n possible combinations of s1, s2 and
23n possible Y . Therefore the probability that the committer cna find s1, s2 for
some Y is 22n

23n = 1
2n .

Pseudorandom Functions
Idea: We want a PRG with random access.

Let a PRG(s = {0, 1}n) → {0, 1}2n , we define a PRF (s, ADDR) → {0, 1}
which samples a single bit among a polynomial number of addresses from the
PRG in polynomial time.

Security: Assume J ∈ PPT . Given a stream of bits, J is unable to distinguish
if the bits come from a PRF or a random string.

Constructing PRF from PRG
We construct PRF (s, ADDRR). Given a PRG(s ∈ {0, 1}n) → x0 ∈
{0, 1}n|x1 ∈ {0, 1}n, then we construct a tree with root node s and leaves x0, x1.
We can continue to build a tree by inputing x0 and x1 as seeds to the PRG
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and generating x00, x01, x10, x11. We define the PRF as the traversal down the
binary tree using the ADDR and output the leaf node it reaches.

Proving PRF Security
If ∃ distinguisher for PRF , then ∃ extended distinguisher for PRG.

Extended PRG Indistinguishability: Given s1...sn → PRG(s1)...PRG(sn), a
J ∈ PPT cannot distinguish the PRG outputs from random. By hybrid
argument, we can show that if such a distinguisher exists, then we can construct
a distinguisher for a single s.

Suppose there exists a J ∈ PPT that can distinguish between a PRF tree and
a random binary tree with probability > ϵ(n). Construct the hybrids where the
top j levels are from random and the bottom n − j levels are from the PRF . By
hybrid argument, there are two trees such that J can distinguish with probability
> ϵ(n)

k . We can select a level in which one hybrid is from PRF but from random
in the other. Since J can distinguish between the two trees, then we can use
this to judge whether this level is from the PRG or from random. Therefore J
contradicts the extended PRG indistinguisability.

Public Key Encryption
Idea: generate a public key which can be publicly avaliable, and a private key
that is secret

For some random r, Gen(1k, r) → (pk, sk)

Signature Scheme
For some document:

Sign(sk, D) → σpk,D

V erify(pk, D, σpk,D) → True/False

Correctness: Verify outputs True for all D signed with sk corresponding with
pk.

Unforgeability: A challenger recieves m1...mk from adversary and sends signa-
tures of m1...mk to adversary. The adversary cannot find m′ ≠ m1...mk such
that V erify(pk, m′) → True.

Creating a Signature Scheme - Lamport
Assume we have a 1-way function f . We can generate secret keys x0, x1 and
calcualte public keys f(x0) = y0, f(x1) = y1. To sign a 0, we show x0, and to
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sign a 1 we show x1. To verify, we show that the signed x corresponds with the
y = f(x) that was signed.

Proof of unforgeability: Assume an adversary can forge a signature with non-
neligible probability. Suppose we generate some z and repalce y0 with z. With
probability 1

2 , the adversary will forge z by finding some xz such that f(xz) = z.
However since we did not know this xz, then the adversary has just inverted f ,
thus a contradiction.

Exting to n bits: we can generate multiple x0 and x1 for each bit position we
want to sign.

However, we want to accomplish this wihtout arbitrarily large keys.

Using Collision Resistant Hash Functions
We can use a collision resistant hash function to reduce the size of the document,
then sign the hash of the document. If a valid signature exists for a different
document, then there must have been a collision in the hash function.

Collision resistant Hash Functions
A hash function h is collison resistant if an adversary cannot find x1, x2 such
that h(x1) = h(x2).

U1WHF: A hash function h is universal and 1-way if an adversary cannot find
x2 given x1 such that h(x1) = h(x2)

Constructing A 1-way Universal hash Function
Let h(a, b, x) = delete first bit (ax + b)

Let f be a 1-way permutation f({0, 1}n) → {0, 1}n.

We can create a universal 1-way hash function as U1WHF(x) = h(f(x))

Discrete Log
Given h = gx mod p, it is believed to be hard to find x given h.

Eliptic Curves
Given curve of form ax3 + bx + c = 0, we iteratively sample two points and find
a thrid that is colinear, then reflect that over x axis. Keep iterating using this
protocol many times
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Public Key Encryption
Diffe-Hellman
Alice and Bob agrees on g, p ∈ Zp

Alice picks random x, Bob picks random y

Key Exchange: Alice sends gx mod p, Bob sends gy mod p. Both can compute
gxy mod p as a shared secret.

Alice’s secret key sk = x and can publish the public key pk = (h = gx

mod p, p, g)

Encrypt message m and random r, we can send Enc(m, r) = (gr mod p, hr ∗ m
mod p) = c

Decrypt message m using r, we can send Dec(u, v) = ( v
ux mod p)

Security

Indistinguishability:

A Challenger generates pk, sk and sends pk to Adversary. Adversary chooses
two different messages m1, m2 and sends to the Challenger to encrypt using sk.
Adversary wins if they can distinguish which message m1 or m2 was encrypted
with probability more than 1

2 + ϵ.

DDH Indistinguishable

The distributions (g, ga, gb, gc...) and (g, ga, gb, gab, ...) are indistinguishable from
each other.

Semantic

Suppose a series of messages come from a samplable distribution D. Challenger
draws a message m from D.

Adversary must predict any f(m) given only D or given D and Enc(m) with
negligibly similar probability.

Lunchtime Attacks (CCA-1)

The challenger generates sk, pk and sends pk to Adversary. Adversary sends
c1...cn ciphertexts nonadaptively or adaptively to the Challenger to decrypt.
Adversary sends m0 ̸= m1 and Challenger encrypts m0, m1. Given the chosen
ciphertexts and known decryptions, the Adversary is not able to distinguish
between the encryptions of m0, m1.
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CCA-2

The challenger generates sk, pk and sends pk to Adversary. The adversary is
allowed to generate decryptions of any number of ciphertexts c1...cn adaptively.
Challenger encrypts m0, m1 as before and the adversary is able to ask for
decryptions adaptively as long as they are not for m0 or m1. The Adversary
wins if they are able to distinguish between the two messages with probability
> 1

2 + ϵ.

Constructing Non-Adaptive CCA-1 Encryption
(Cramer - Shoup)
CS-Light: Pick sk = x, y, a, b, pk=g1, g2, h = gx

1 ∗ gy
2 , c = ga

1 ∗ gb
2. - Enc(m, r) =

(gr
1, gr

2, hr ∗ m, cr) - $Dec(u, v, e, w) = $ - Check if not w = ua ∗ vb then output
fail - output e

ux∗vy

Proof of Non-Adaptive CCA-1 Security
Assume towards contradiction that ∃A ∈ PPT that can distinguish two encrypted
messages m0, m1 with Pr > 1

2 +ϵ. We show that the probability A can distinguish
ciphertexts made with DDH tuples {g1, g2, g3, g4, ...} = {g1, ga

1 , gb
1, gab

1 , ...} versus
from random {g1, g2, g3, g4, ...} ∈ R has a gap in probability.

Challenger computes (x, y, a, b), g1, g2, h, c as before. Challenger decrypts the
non-adaptive c1, ..., cn ciphertexts honestly. When the Adversary presents
m0, m1, we instead send (g3, g4, gx

3 ∗ gy
4 ∗ m, ga

3 ∗ gb
4).

This is a valid decryption because:

$ u = g_3 = g_1ˆb, \ v = g_4 = g_1ˆ{ab}, \ e = g_1ˆ{bx}g_1ˆ{aby} m, \
w = g_1ˆ{ba}*g_1ˆ{abb} $.

Since w = gaa
1 ∗ gabb

1 = ua ∗ vb and e
ux∗vy = gbx

1 ∗gaby
1 ∗m

gbx
1 ∗gaby

1
= m. if we consider b = r

then we see that g3 = gr
1 and g4 = gr

2. Therefore A’s advantage in distinguishing
the ciphertexts is the same as in distinguishing DDH tuples.

However, if {g1, g2, g3, g4, ...} ∈ R. We run the protocol as before. When the
Adversary sends (u, v, e, w):

Case 1: u = gr
1, v = gr

2 → logg1(u) = logg2(v) = r

Define α = logg1(g2) then Adversary learns

m = e
ux∗vy → logg1(m) = logg1(e) − x ∗ logg1(u) − y ∗ logg1(v)

= logg1(e) − x ∗ logg1 − y ∗ α ∗ logg2(v)
= logg1(e) − r ∗ (x + α ∗ y)

9



Then the Adversary learns the realtion x + α ∗ y. This does not leak any new
information about the private key because we could have computed logg1h =
x + α ∗ y. Therefore the Adversary does not gain any additional information and
distinguishes the two ciphertexts with Pr = 1

2 .

Case 2: logg1(u) = r ̸= logg2(v) = r′

Then the adversary’s chances of finding w that for which the decruption will
succeed is negligible. Recall:

c = ga
1 ∗ gb

2 → logg1(c) = a + α ∗ b
w = ua ∗ vb → logg1(w) = a ∗ r + α ∗ b ∗ r′

Note both equations are linearly independent. When the decryption fails, then
Adversary can only eliminate one (a, b) pair for each fail. Therefore because the
Adversary is limited to a polynomial number of ciphertext, then the adversary
cannot find a, b

Construction CCA-2 Secure Encryption
CCA-2 CS-Full: Pick sk = x, y, a, b, a′, b′, pk=g1, g2, h = gx

1 ∗ gy
2 , c = ga

1 ∗ gb
2, d =

ga′

1 ∗ gb′

2 . Also publish a collision resistant hash function f .

• Define β = f(gr
1, gr

2, hr ∗ m), Enc(m, r) = (gr
1, gr

2, hr ∗ m, (c ∗ dβ)r)
• $Dec(u, v, e, w) = $

– Check if not w = ua+β∗a′ ∗ vb+β∗b′ then output fail
– else output e

ux∗vy

Proof of CCA-2 Security
Assume towards contradiction that ∃A ∈ PPT that can distinguish two encrypted
messages m0, m1 with Pr > 1

2 +ϵ. We show that the probability A can distinguish
ciphertexts made with DDH tuples {g1, g2, g3, g4, ...} = {g1, ga

1 , gb
1, gab

1 , ...} versus
from random {g1, g2, g3, g4, ...} ∈ R has a gap in probability.

Challenger computes (x, y, a, b, a′, b′), (g1, g2, h, c, d) as before. Challenger de-
crypts the non-adaptive c1, ..., cn ciphertexts honestly. When the Adversary
presents m0, m1, we instead send (g3, g4, gx

3 ∗ gy
4 ∗ m, ga+β∗a′

3 ∗ gb+β∗b′

4 ).

Case 1 u = gr
1, v = gr

2 → logg1(u) = logg2(v) = r

If the tuples come from DDH, then the Adversary’s advantage is the same as
before and the Adversary does not learn any additional information.

Case 2: logg1(u) = r ̸= logg2(v) = r′

The adversary learns that :
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c = ga
1 ∗ gb

2 → logg1(c) = a + e ∗ b

logg1(d) = a′ + e ∗ β

logg1(w) = r ∗ (a + β ∗ a′) + r′(b + β ∗ b′)

During the second round of decryptions when Adversary sends (u, v, e, w). If
u = u∗, v = v∗, α = α∗ but w ̸= w∗ then it will fail with large probability.
Otherwise, if the hashes collide f(w∗) = f(w), then you have found a collision
in a collision resistant hash function. Therefore the Adversary learns nothing
about the message.

Secure Multiparty Computation
Given 1-out-of-2 Oblivious Transfer. If A sends b0, b1 then B secretely recieves
random selection S on b0 or b1 without knowing either input.

___________
b0 -> | | <- S

| |
b1 -> |_________| -> random selection S on b0 or b1

We can compute AND by feeding in b0 = x · 0, b1 = x · 1 and S = y, the output
is therefore x · y which is AND. However, since B knows y then they can know
the value of x if y = 1.

Additive Secret Sharing
Suppose A and B want to compute a function on their secret input x and y.
For each bit of x, A picks x0 ⊕ x1 = x, keeps x0 and sends x1 to B. B picks
y0 ⊕ y1 = y, keeys y1 and sends y0 to A. A has x0, y0 and B has x1, y1.

To compute x ⊕ y, compute (x0 ⊕ y0) ⊕ (x1 ⊕ y1). Therefore, A and B can
both compute XOR on their shares, then send their results to each other and
reconstruct the result.

To compute x·y, note that x·y = (x0⊕x1)·(y0⊕y1) = x0·y0⊕x0·y1⊕x1·y0⊕x1·y1.
A can compute x0 · y0 and B can compute x1 · y1. To exchange the missing
intermediate terms, A picks random r and using 1-2-OT sends r ⊕ x0 · y1 to
B without learning y1. B can use the same mechanism and random s to send
s ⊕ x1 · y0 to A.

Therefore, x · y = (x0 · y0 ⊕ r ⊕ s ⊕ x1 · y0) ⊕ (x1 · y1 ⊕ r ⊕ s ⊕ x0 · y1). Since A
and B have each secret for their part then can send the result of each part and
compute the final result.

11



Protectionn Against Collusion
GMW: We can extend the 1-2-OT protocol where each party generates r1...rk

for each of the other k parties. To compute, each party may need to engage in
1-2-OT protocol to determine intermediate results individually with each other
party. This is resilient to n − 1 collusion, but does not allow any parties to drop
out before the protocol is complete.

BGW: We can use a Lagrange sum to build polynomials f(x) = y1 ∗ L1(x) +
... + yn ∗ Ln(x). For k parties, each party with secret input s can generate a
random Lagrange polynomial f(x) = s + ax + bx2 + cx3 + ... with degree k and
send f(n) to party n for n > 0 (including themselves). Therefore f(0) = s but
no other party knows each other’s f(0).

To compute α + β given secret shares f(x) = α + ..., g(x) = β + .... A computes
f(1) + g(1) and B computes f(2) + g(2). Both parties can release their shares
and they can recompute the Lagrange sum from the two points.

To compute α ∗ β given secret shares f(x) = α + ..., g(x) = β + .... A computes
y1 = f(1) ∗ g(2) and B computes y2 = f(2) ∗ g(2). Therefore A can pick a
new polynomial Q and compute y1 ∗ L1(0) + Q(x) and sends to each party for
x = 1...k. B picks R and computes y2 ∗ L2(0) + Q(x). Then all parties sum
their shares. Since multiplication doubles the degree of polynomials, then if we
start with degree n

k then after multiplication the polynomial has degree 2n
k and

therefore we only need that many parties to finish the computation.

A majority of colluding parties can reconstruct the polynomial from their shares.
A majority of colluding parties can reconstruct the polynomial from their shares.

Yao’s Garbled Circuits
Suppose two parties want to compute f(x = x0|x1) = y. We assign one party is
the Garbler and one is the Evaluator.

Garble(f, r) → f̂

Garble(x, r) → x̂

Such that f̂(x̂) = y. The evaluator can then garble y → ŷ using ob oblivious
transfer.

We say that it is secure if ∀x1, x2s.t.f(x1) = f(x2) then f̂(x̂1) ≈ f̂(x̂2) are
computationally indistinguishable. There exists a simulator that garbles a
different circuit such that the truth table distributions are indistinguishable.

For AND gate:
Consider private key encryption Ek(m) = c. Garbler can gener-
ate random keys k0, k1, labels b0, b1, and c0, c1. Garbler can encrypt
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Ek0(Eb0(c0)), Ek0(Eb1(c0)), Ek1(Eb0(c0)), Ek1(Eb1(c1)). Evaluator can evaluate
inputs to the AND gate as k0 or k1 on one wire and b0 or b1 on the other.
Evaluator will get the key pair to decrypt one of the encryptions on c0 or c1.

For OR gate:
Similar idea, create encryption of results and store in a truth table. Encrypt
inputs and evaluator is able to decrypt one value of the truth table.

Proof of Security
Assume that an adversary can distinguish one circuit from another on the
same input. Therefore there is at least one gate where the adversary is able to
distinguish the two circuits. Since the output of the gate is a decryption of a key
in the truth table of the gate. Therefore if the adversary is able to distinguis the
circuits, then adversary must be able to distinguish between encryptions which
therefore breaks the encryption.

Optimizations
Question: how many random bits required to compute XOR/AND

XOR: 1 random bit

• Suppose parties p1...pn want to compute ⊕(b1...bn). p1 can compute
b1 ⊕ r → m and send to p2. p2 computes m ⊕ b2 → m etc. So to compute
XOR, you only need 1 bit.

AND: ~5 random bits, proof that it needs more than 2 random bit

• If parties can compute f 1-privately using constant random bits, then f
has a linear size circuit.

1-way Trapdoor Permutation Family
Given one-way permutation f , we build a trapdoor f−1 which can invert the
function that can invert f in polynomial time.

Constructing Oblicious Transfer Protocol
Rabin-OT: 1/2 chance to recieve bit otherwise get nothing.

Sender generates 3n bits and sends using Rabin-OT. By Chernoff bound, Reciever
has a marginal chance of recieving less than n bits and the probability of recieving
more than 2n bits is also marginal. Reciever selects s0, s1 mutually disjoint sets
of size n bits. Sender sends b0 ⊕ s0 and b1 ⊕ s1.
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PIR
Idea: want to retrieve data from a database without server(s) knowing which
position was retrieved.

CGKS Two-Server
Two servers which promise not to collude with database size n.

Database: matrix DB1 :
√

n ×
√

n, DB2 :
√

n ×
√

n.

Suppose a user wants item i, j from the database. User picks random r :
√

n
and sends to DB1. DB1 XORs columns where ri = 1 to get y1. User generates
r′ by flipping bit i in r and sends to DB2 which generates y2 User can construct
column i by computing y1 ⊕ y2.

Reducing communication to 3
√

n

By adding additional servers, we can reduce the communication cost of the
protocol. The user wants to retrieve i, j. User picks r1, r2 and DB1 database
sends the XOR of cells with x1 = 1, x2 = 1. User sends to DB2 : r′

1, r2,
DB3 : r1, r′

2, DB4 : r′
1, r′

2 by flipping the row, column, and both. The XOR of
all 4 values is the value of i, j.

We can extend this principle to 3 dimensions and 8 servers. The user wants to
retrieve point i, j, k and sends random x, y, z to DB1. The user then flips the
i, j, k bits combinationally for each other database. XOR of all these values will
be the value.

We can collapse the databases by only using DB1 and DB − 8. DB1 recieves
x, y, z and DB8 recieves xi, yj , zk. Note that DB1 can simulate DB2...DB4
by toggling x, y, z for every possible i, j, k. DB8 can simulate DB5..DB7 by
untoggling xi, yj , zk for every possible i, j, k. Therefore the communication
overhead is 3

√
n using 2 servers.

Locally Decodable Codes
In a general PIR scheme, user asks q1 to DB1 and q2 to DB2 and recieves a1, a2

Suppose we generate the answers for possible queries for q1, q2. Even if an
adversary corrupts a constant portion of the database, there is still a large
constant probability that a specific point is recoverable by reading two positions.
We dont have to generate the entire code to recover one position.

Single Database Implementation
Given a database x1...xn and assume additively homorphic encryption such that
E(x) ⊕ E(y) = E(x + y). The user generates query vector q = 0000...1....000
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and encrypts each bit. The database adds an encryption of the database to the
encryption of the query and returns to the user.

Offline & Online System
Offline: User sends

√
n set of queries with length

√
n to DB1. Server sends XOR

of each set.

Online : User picks a set of queries si that contains i to retrieve. Send si − i to
DB2 abd returns the XOR.

User can recover i by subtraction both results.

Oblivious RAM
Idea: We want to create a system that hides the patterns of read and write
accesses.

User generates a random permutation π using a PRF of the data entry locations.
When the user wants to do a read, they compute the permutation and get the
lcoation. This works as long as the user only reads a location at most once.

Extending More than 1 Read
User stores a local cache and stores read values to that location. On a subsequent
read, the user can return the local cache value. When the local cache runs out, we
can shuffle the remote database with the local cache and pick a new permuation.

Use a sorting network:

• Using a compatator gate: c(a, b)− > max(a, b), min(a, b)
• The sorting network sorts any set of input integers

We can obliviously sort the database by using the sorting network to sort against
random indices.

Secure Indirect Addressing
Indirect addressing: We can use a hash function to take an address and output
a randomized address. we can then use a hash table to store the values. Each
bin in the hash table will have on average O(logn) values.

To implement secure indirect addressing, we can use a PRF to randomize
addresses. We can again construct a hash table.

We can also move the user’s local cache to the remote database since it needs to
be scanned fully anyways. This allows the user to have constant memory.
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Heirarchical ORAM - Poly Log Overhead
We can reduce the

√
n cache by having a heiarchy of caches starting from the

topmost, smallest buffer down to the final hashtable. Each level of cache has
its own PRF . For each read, we compute the PRF for each level and search
that level for the item. If it is found, then we continue down searching random
values, and cache it into the topmost buffer. When each level fills, we shuffle it
with the lower level.

Cuckoo Hash Table
Instead of making a hash table with many buckets, we can use two hash functions
h1, h2. If there are collisions with h1 we can evict the existing element to a new
location using h2. We can use the cuckoo hash tables to replace the heiarchical
levels in Heierarchical ORAM. However, this leaks information because for small
levels, certain keys are incompatible becuaseh they would create a cycle of
evictions. Therefore, we need to use a stash to put those items when that
happens.

Panorama / Optorama
We can shuffle together two adjacent levels of the Heirarchical ORAM using
log (n) size sorting network.
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