
FPGA: Field Programmable Gate Arrays

FPGA, Structure, Configuration
Tuesday, March 29, 2022 5:02 PM

 ECE 111 Page 1

Combinational: Only boolean logic elements
Sequential: Stores a state which captures past history

Behavioral Model: Specifies the expected behavior of the system without regard for the gate level details

Dataflow Model: Describes how data flows through the system, uses logical expressions

Gatelevel Model: Models individual gates and interconnects, uses logic gate components, can specify delays

Transistor Level: Models each transistor, uses NMOS, PMOS, CMOS

SystemVerilog
Tuesday, April 5, 2022 5:01 PM

 ECE 111 Page 2

Def: A Module is a container that holds design behavior
Can hold other modules-

Format:
Module start and end declaration, contains module name
Optional parameter list
Primary port declarations
Local nets and variable declarations
Concurrent statements which define functionality
Instances of other modules

Parameters: Optional values with defaults
Useful for making module configurable-

Can be overridden on instantiation-

Ports: set of signals that act is inputs/outputs
Syntax: <direction> <datatype> <width> name;
Directions: input, output, inout
Datatype: logic, wire, reg

wire: combinational driven value-

reg: sequential driven value-

Logic: either wire or reg-

Width: example [N-1 : 0]

Defaults: input wire 1

Modules, Parameters, Ports
Thursday, April 7, 2022 5:05 PM

 ECE 111 Page 3

Port Order:
Simple to code-

Error prone, difficult to debug, ORDER IS IMPORTANT-

Explicit: Encouraged
Verbose, each port needs to be specified-

Prevents accidents, order does not matter-

Dot-Name:
Less verbose, infers connections by matching names-

Potentially error prone, names must match-

Dot-Star:
Simplest-

Most error prone-

Connecting Ports
Thursday, April 7, 2022 5:58 PM

 ECE 111 Page 4

Parameters can be internal or external:
Parameter is specified externally-

Localparam is specified internally-

Syntax: parameter/localparam <datatype> <signedness> <size> name = <value>;

Parameters overridden using the defparam statement or:

Specifying Parameters
Thursday, April 7, 2022 6:05 PM

 ECE 111 Page 5

Data is declared using the syntax: <data kind> <data type> <name>;
var logic carry_out;
wire logic [2:0] sum;

Data types are divided into two main groups: Nets and Variables
Net or Variable are 2 (0, 1) or 4 state variables (0, 1, X, Z)

Nets: represent a physical connection between structural entities
Does not store value-

Is continuously driven-

Wire is most common Net-

Wire elements are usually used by combinational logic
Only legal on left hand side of assign statements-

Variables: represent data storage element in circuit
Stores some values for simulation, does not indicate actual storage in silicon-

Driven by sensitivity list (usually a clock)-

Reg is most common Variable-

Reg elements models hardware registers
Used in always@(…) blocks-

Only legal in left hand side of "=" or "<=" statements-

Data Kinds, Data Types, Nets(Wire), Variables(Reg)
Tuesday, April 12, 2022 5:13 PM

 ECE 111 Page 6

Idea: Using the "assign" statement, drive multiple LHS Net type concurrently

Example:

assign sum = a^b;
assign cout = a & b;

Continuous assign cannot be used inside always or initial blocks

Continuous assignment can be inferred from always block
Example: always@(*)
Since the sensitivity list includes all inputs, then the statements can be interpreted as combinational

Continuous Assignment
Tuesday, April 12, 2022 5:40 PM

 ECE 111 Page 7

An if else statement can be condensed into the Ternary
Operator:
assign out = p ? a:b;

Example:

Conditional Operator
Tuesday, April 12, 2022 5:57 PM

 ECE 111 Page 8

Initial block models behavior which is applied only at t = 0

Always block describes behavior which continuously runs
Has sensitivity list @(…) which determines when always block is triggered

Can model both combinational (always_comb or always @(*) or sequential (always @(posedge clock or negedge clock)○

Also can detect level changes (posedge or negedge) using @(x)○

-

Uses blocking or non-blocking statements-

Non-Blocking statement: f = a + b;
Used to model combinational logic-

Executes multiple statements in order specified-

Values assigned immediately, blocks progression on each assignment-

Blocking statement: f <= a + b;
Used to model sequential logic-

Executes multiple statements concurrently-

Values assigned at the end of block, does not block progression on each assignment-

Execution order:
Blocking statements, continuous assignments1)
#0 Blocking statements2)
Non-blocking statements updated3)

Guidelines:
Always use blocking in always_comb-

Always use non-blocking in always_ff-

Blocking and Non-Blocking
Thursday, April 14, 2022 4:59 PM

 ECE 111 Page 9

Def: Inter assignment delay (delay on LHS)
Execution of entire statement is delayed-

Syntax: #<delay> <LHS> = <RHS>-

Def: Intra assignment delay (delay on RHS)
Only RHS assignment is delayed-

Syntax: <LHS> = #<delay> <RHS>-

Inter/Intra Delays
Tuesday, April 19, 2022 5:56 PM

 ECE 111 Page 10

Def: Procedural Blocks are either initial blocks or always blocks.
Initial: runs once at t = 0
Always: runs once when sensitivity list is triggered

Initial blocks are non-synthesizable
Always blocks can be synthesized

Procedural Blocks
Thursday, April 21, 2022 5:07 PM

 ECE 111 Page 11

always_comb: used to model combinational logic
Infers a complete sensitivity list from statements-

Executes once at t = 0-

Incomplete case statements not allowed-

Multiple drives not allowed-

always_ff: used to model sequential flip-flop logic
Sensitivity list must be specified as edge level (posedge or negedge) of clock and asynchronous set/reset signals-

Mixing of signed edge and double edge not allowed-

Sensitivity list cannot contain other signals like Data input or enable input-

Multiple drives not allowed-

Cannot mix blocking and not blocking statements-

always_latch: used to model sequential latch flip-flip logic
Infers a complete sensitivity list from statements-

Constructs such as #, @, wait which delay execution of statements are not allowed-

Multiple drivers not allowed-

always_comb, always_ff, always_latch
Thursday, April 21, 2022 5:12 PM

 ECE 111 Page 12

Idea: Used to develop testbench code to simulate RTL code
Create how stimulus will be applied to signals-

Specifies initialization of local variables-

Specifies how the design signals are monitored (can dump to file)-

Specifies simulation pass and fail criteria-

Executed only once at the beginning of the simulation-

Note: Multiple initial blocks can result in race conditions

Initial blocks
Tuesday, April 26, 2022 6:11 PM

 ECE 111 Page 13

Decision Statements:
If-else: inferred to be a mux

1 is true, 0 x z are false○

Use logical and not bitwise logical operators○

-

If (w/out else): inferred to be a latch
1 is true, 0 x z are false○

Use logical and not bitwise logical operators○

-

Case: inferred to be mux, decoder, encoder or next state logic (in FSM)
Has implied break statement at end of each item, used begin/end to create multiple line items○

Incomplete case statements will infer a latch○

Case items are not-necessarily non-overlapping○

-

Case (…) inside: can use "?" as wildcard operators, bits with value 0, 1, X, Z will be ignored○

Casez: wildcard "Z, ?"○

Casex: wildcard "X, Z, ?"○

"unique" modifier: indicates items can be evaluated in parallel, all items are unique○

"priority" modifier: indicates items must be evaluated in order listed, items are not unique○

If, Case
Thursday, April 28, 2022 5:01 PM

 ECE 111 Page 14

Functions: describes block of combination logic operations
Can be called multiple times, which enables reusability ○

Can be called from continuous assignment, always, initial blocks○

Can be synthesizable or non-synthesizable depending on following coding guidelines○

Must have input, output, inout, logic ports declared in argument list○

Return: values can be returned by explicit "return" statement, or by assigning function name to value○

Void: function has no direct return types, can drive ONE output argument▪

Function types: Static, automatic - determine local variable scope

Static/automatic: static retains internal values every call, automatic clears local variables every call▪

○

Functions
Thursday, April 28, 2022 6:07 PM

 ECE 111 Page 15

Generate: used to instantiate decision based modules
Can be used with if/else or for loop to instantiate modules based on decision logic or logic-

Permitted items in generate statements:
Modules, primitive instances○

Initial or always procedural blocks○

Continuous assignment○

New and variable declarations○

Parameter redefinitions○

Task or function definitions○

-

Illegal items in generate statements:
Port declarations, constant declarations, specify blocks○

-

genvar: special iteration variable that is accessible only during elaboration, not accessible runtime
Can only be positive number, 0, X or Z○

-

Generate
Tuesday, May 3, 2022 5:12 PM

 ECE 111 Page 16

Looping Statements:
For loop: used to expand hardware logic, iterations must be fixed number-

Ex: apply logic between consecutive bits of multiple bit input-

Repeat: execute block a set number of times, synthesizable but commonly used in testbenches-

While: executes block wile condition is true, synthesizable if bounds are fixed value
Condition is evaluated at top of loop body○

-

Do-while: while loop but will run at least once, synthesizable if bounds are fixed value
Condition is evaluated at end of loop body○

-

Forever: executes block indefinitely, not synthesizable-

Foreach: iterates through dimensions of unpacked array, not synthesizable
Will automatically declare loop control variables, exit conditions, increment/decrement ○

-

Looping Statements
Tuesday, May 3, 2022 5:28 PM

 ECE 111 Page 17

Tasks: encapsulates one or more statements which can be called from different parts of the code
Syntactically similar to functions but do not have return values-

Rules:
Can be static (retains local variables for next call) or automatic (new calls have new local variables)-

Contain blocking and non-blocking assignments-

contain any time controlled statements such as #, @, or wait, posedge, negedge, etc -

call another tasks and functions -

have zero or multiple inputs and outputs specified in its argument list -

take, drive and source global variables, when no local variables are used -

be used in both synthesizable and non-synthesizable code-

Tasks vs Functions:

Tasks, Tasks vs Functions
Tuesday, May 3, 2022 5:31 PM

 ECE 111 Page 18

Def: An FSM is combination of sequential state with combination logic feedback
Must have finite number of states-

Can only be in one state at a time (current state/present state)-

Transitions between states by triggering event or condition-

Defined by initial state, list of states, and transition conditions-

Mealy: output is determined only by present state
Slower response time, output changes on next clock cycle-

2 block approach:
Sequential logic to manage present state○

Combinational logic to determine next state and outputs○

-

3 block approach:
Sequential logic to manage present state○

Combinational logic to determine next state ○

Combinational logic to determine outputs○

-

Moore: output is determined by both present state and inputs
Faster response time, output changes immediately with input change-

2 Block approach:
Sequential logic to manage present state○

Combinational logic to determine next state and outputs○

-

1 block approach:
Faster in simulation-

Cannot simulate mealy FSM-

Note: Registering the output of mealy FSM is equivalent to a moore FSM

Finite State Machines
Thursday, May 5, 2022 5:01 PM

 ECE 111 Page 19

Possible ways to encode states in a FSM:
Binary value encoding: space efficient encoding but slower combinational logic-

One-hot encoding: space inefficient encoding but faster combinational logic-

Gray encoding-

Johnson encoding-

LFSM encoding-

Declaring encodings in SystemVerilog

State Encoding
Tuesday, May 10, 2022 5:26 PM

 ECE 111 Page 20

Cryptographic Hashing should have the following properties:
Compression: hash output should be the same length regardless of input size-

Avalanche Effect: small changes in the input should have large changes in the output-

Determinism: the same input should always have the same hash-

One-way function: Easy to hash but difficult to unhash-

Collision Resistance: Two inputs with the same hash should be extremely rare-

Efficient: Should be relatively quick to compute-

SHA-256:
Message <= 2^64 bits-

Message processed in 512 bit blocks sequentially-

Hash value is 256 bits-

Cryptographic Hashing, SHA 256
Thursday, May 12, 2022 4:58 PM

 ECE 111 Page 21

Using SHA 256 hashing algorithm, we can keep a distributed ledger of transactions:

Transactions are inserted into the blockchain only if it starts with a specific pattern (ie 7 consecutive 0s):
The block will include a variable called the nonce which allows a block to follow the pattern

When a transaction is made, the sender calculates a nonce, and other miners compete to find the nonce to verify the
transaction. Once the nonce is found, the transaction is added to the ledger

The system is secure because any malicious miner would have to out hash all other miners to catch up

Bitcoin Hashing Algorithm
Monday, May 16, 2022 4:18 PM

 ECE 111 Page 22

