Merge pull request #56 from ltcptgeneral/Nicolas-Branch
Fixed Functions Nicolas Schluep
This commit is contained in:
commit
3b32df90de
@ -15,13 +15,22 @@ function output = epic_effect_schluep(input, Fs, LOW, MED, HIGH)
|
|||||||
% HIGH: The maximum frequency the filter will amplify. A typical value for
|
% HIGH: The maximum frequency the filter will amplify. A typical value for
|
||||||
% this variable is 1000 Hz.
|
% this variable is 1000 Hz.
|
||||||
|
|
||||||
non_stereophonic = input(:, 1); % Removes the sterophonic property of the input sound
|
n = size(input, 2);
|
||||||
% by just taking the first column of data.
|
|
||||||
|
|
||||||
Len = length(non_stereophonic);
|
non_stereophonic = input;
|
||||||
|
|
||||||
|
if (n == 1) || (n == 2)
|
||||||
|
non_stereophonic = input(:, 1); % Removes the sterophonic property of the input sound
|
||||||
|
% by just taking the first column of data.
|
||||||
|
non_stereophonic = transpose(non_stereophonic);
|
||||||
|
end
|
||||||
|
|
||||||
|
modified_input = non_stereophonic(1, :);
|
||||||
|
|
||||||
|
Len = length(modified_input);
|
||||||
F = Fs * ((-Len/2) : ((Len/2) - 1)) / Len; % Creating the array of frequencies
|
F = Fs * ((-Len/2) : ((Len/2) - 1)) / Len; % Creating the array of frequencies
|
||||||
% which the FFT Shifted version of the signal can be plotted against.
|
% which the FFT Shifted version of the signal can be plotted against.
|
||||||
inputFreq = fftshift(fft(non_stereophonic)); % Creates the Fourier Transform of the
|
inputFreq = fftshift(fft(modified_input)); % Creates the Fourier Transform of the
|
||||||
% input signal. fftshift() makes it such that the zero frequency is at the
|
% input signal. fftshift() makes it such that the zero frequency is at the
|
||||||
% center of the array.
|
% center of the array.
|
||||||
lowAmplifyFilter = zeros(1, length(inputFreq));
|
lowAmplifyFilter = zeros(1, length(inputFreq));
|
||||||
@ -35,7 +44,8 @@ for i = 1:length(lowAmplifyFilter)
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
lowPassedInput = inputFreq .* transpose(lowAmplifyFilter); %Apply the "lowAmplifyFilter".
|
lowPassedInput = inputFreq .* lowAmplifyFilter; %Apply the "lowAmplifyFilter".
|
||||||
|
lowPassedInput = transpose(lowPassedInput);
|
||||||
|
|
||||||
% Adding the chorus effect.
|
% Adding the chorus effect.
|
||||||
realOutput = real(ifft(fftshift(lowPassedInput)));
|
realOutput = real(ifft(fftshift(lowPassedInput)));
|
||||||
@ -53,3 +63,7 @@ for i = 1:100
|
|||||||
end
|
end
|
||||||
|
|
||||||
output = output ./ 100; % Divide by 100 to decrease the amplitude of the sound to a normal level.
|
output = output ./ 100; % Divide by 100 to decrease the amplitude of the sound to a normal level.
|
||||||
|
|
||||||
|
output = transpose(output);
|
||||||
|
|
||||||
|
end
|
@ -13,13 +13,22 @@ function output = muffled_effect_schluep(input, Fs, LOW, MED, HIGH)
|
|||||||
% HIGH: The maximum frequency that the low-pass filter will let pass. A
|
% HIGH: The maximum frequency that the low-pass filter will let pass. A
|
||||||
% typical value for this variable is 1000 Hz.
|
% typical value for this variable is 1000 Hz.
|
||||||
|
|
||||||
non_stereophonic = input(:, 1); % Removes the sterophonic property of the input sound
|
n = size(input, 2);
|
||||||
% by just taking the first column of data.
|
|
||||||
|
|
||||||
Len = length(non_stereophonic);
|
non_stereophonic = input;
|
||||||
|
|
||||||
|
if (n == 1) || (n == 2)
|
||||||
|
non_stereophonic = input(:, 1); % Removes the sterophonic property of the input sound
|
||||||
|
% by just taking the first column of data.
|
||||||
|
non_stereophonic = transpose(non_stereophonic);
|
||||||
|
end
|
||||||
|
|
||||||
|
modified_input = non_stereophonic(1, :);
|
||||||
|
|
||||||
|
Len = length(modified_input);
|
||||||
F = Fs * ((-Len/2) : ((Len/2) - 1)) / Len; % Creating the array of frequencies
|
F = Fs * ((-Len/2) : ((Len/2) - 1)) / Len; % Creating the array of frequencies
|
||||||
% which the FFT Shifted version of the signal can be plotted against.
|
% which the FFT Shifted version of the signal can be plotted against.
|
||||||
inputFreq = fftshift(fft(non_stereophonic)); % Creates the Fourier Transform of the
|
inputFreq = fftshift(fft(modified_input)); % Creates the Fourier Transform of the
|
||||||
% input signal. fftshift() makes it such that the zero frequency is at the
|
% input signal. fftshift() makes it such that the zero frequency is at the
|
||||||
% center of the array.
|
% center of the array.
|
||||||
lowPassFilter = zeros(1, length(inputFreq));
|
lowPassFilter = zeros(1, length(inputFreq));
|
||||||
@ -33,7 +42,8 @@ for i = 1:length(lowPassFilter)
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
lowPassedInput = inputFreq .* transpose(lowPassFilter); %Apply the low-pass filter.
|
lowPassedInput = inputFreq .* lowPassFilter; %Apply the low-pass filter.
|
||||||
|
lowPassedInput = transpose(lowPassedInput);
|
||||||
|
|
||||||
% Adding a slight reverb effect.
|
% Adding a slight reverb effect.
|
||||||
realOutput = real(ifft(fftshift(lowPassedInput)));
|
realOutput = real(ifft(fftshift(lowPassedInput)));
|
||||||
@ -50,6 +60,10 @@ output = (realOutput + delayedOutput) ./ 2.0; % Adds the "realOutput" and "de
|
|||||||
% vectors to create a reverb effect. Divides by 2 to avoid clipping
|
% vectors to create a reverb effect. Divides by 2 to avoid clipping
|
||||||
% effects.
|
% effects.
|
||||||
|
|
||||||
|
output = transpose(output);
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -14,13 +14,22 @@ function output = seperate_prevalent_schluep(input, Fs, LOW, MED, HIGH)
|
|||||||
% not be attenuated. A good range of values is usually 250-500 Hz, but it
|
% not be attenuated. A good range of values is usually 250-500 Hz, but it
|
||||||
% depends on the input sound.
|
% depends on the input sound.
|
||||||
|
|
||||||
non_stereophonic = input(:, 1); % Removes the sterophonic property of the input sound
|
n = size(input, 2);
|
||||||
% by just taking the first column of data.
|
|
||||||
|
|
||||||
Len = length(non_stereophonic);
|
non_stereophonic = input;
|
||||||
|
|
||||||
|
if (n == 1) || (n == 2)
|
||||||
|
non_stereophonic = input(:, 1); % Removes the sterophonic property of the input sound
|
||||||
|
% by just taking the first column of data.
|
||||||
|
non_stereophonic = transpose(non_stereophonic);
|
||||||
|
end
|
||||||
|
|
||||||
|
modified_input = non_stereophonic(1, :);
|
||||||
|
|
||||||
|
Len = length(modified_input);
|
||||||
F = Fs * ((-Len/2) : ((Len/2) - 1)) / Len; % Creating the array of frequencies
|
F = Fs * ((-Len/2) : ((Len/2) - 1)) / Len; % Creating the array of frequencies
|
||||||
% which the FFT Shifted version of the signal can be plotted against.
|
% which the FFT Shifted version of the signal can be plotted against.
|
||||||
inputFreq = fftshift(fft(non_stereophonic)); % Creates the Fourier Transform of the
|
inputFreq = fftshift(fft(modified_input)); % Creates the Fourier Transform of the
|
||||||
% input signal. fftshift() makes it such that the zero frequency is at the
|
% input signal. fftshift() makes it such that the zero frequency is at the
|
||||||
% center of the array.
|
% center of the array.
|
||||||
bandPassFilter = zeros(1, length(inputFreq));
|
bandPassFilter = zeros(1, length(inputFreq));
|
||||||
@ -53,10 +62,12 @@ for i = 1:length(bandPassFilter)
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
bandPassedInput = inputFreq .* transpose(bandPassFilter); %Apply the Band-Pass Filter.
|
bandPassedInput = inputFreq .* bandPassFilter; %Apply the Band-Pass Filter.
|
||||||
|
|
||||||
output = real(ifft(fftshift(bandPassedInput)));
|
output = real(ifft(fftshift(bandPassedInput)));
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -11,17 +11,14 @@ function output = FilterSelect(input,Fs,LOW,MED,HIGH,number)
|
|||||||
output = DarellbandpassFilter(input,Fs,LOW,MED,HIGH);
|
output = DarellbandpassFilter(input,Fs,LOW,MED,HIGH);
|
||||||
elseif(number == "AmplifyRange")
|
elseif(number == "AmplifyRange")
|
||||||
output = amplifyFreqRange(input, Fs, LOW, MED, HIGH);
|
output = amplifyFreqRange(input, Fs, LOW, MED, HIGH);
|
||||||
%{
|
|
||||||
elseif(number == "EpicEffect")
|
elseif(number == "EpicEffect")
|
||||||
output = epic_effect_schluep(input, Fs, LOW, MED, HIGH);
|
output = epic_effect_schluep(input, Fs, LOW, MED, HIGH);
|
||||||
elseif(number == "MuffledEffect")
|
elseif(number == "MuffledEffect")
|
||||||
output = muffled_effect_schluep(input, Fs, LOW, MED, HIGH);
|
output = muffled_effect_schluep(input, Fs, LOW, MED, HIGH);
|
||||||
elseif(number == "SeparatePrevalent")
|
elseif(number == "SeparatePrevalent")
|
||||||
output = seperate_prevalent_schluep(input, Fs, LOW, MED, HIGH);
|
output = seperate_prevalent_schluep(input, Fs, LOW, MED, HIGH);
|
||||||
%}
|
|
||||||
elseif(number == "IdealBandReject")
|
elseif(number == "IdealBandReject")
|
||||||
output = bandreject_filter(input, Fs, LOW, HIGH);
|
output = bandreject_filter(input, Fs, LOW, HIGH);
|
||||||
|
|
||||||
elseif(number == "EnchanceTarget")
|
elseif(number == "EnchanceTarget")
|
||||||
output = AnuragEnhanceTarget(input, Fs, LOW, MED, HIGH);
|
output = AnuragEnhanceTarget(input, Fs, LOW, MED, HIGH);
|
||||||
elseif(number == "DampenTarget")
|
elseif(number == "DampenTarget")
|
||||||
|
Reference in New Issue
Block a user