from torch.utils.data import Dataset from transformers import BertGenerationEncoder, BertGenerationDecoder, EncoderDecoderModel, BertTokenizer from tqdm import tqdm as progress_bar import torch import matplotlib device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) encoder = BertGenerationEncoder.from_pretrained("google-bert/bert-base-uncased", bos_token_id=101, eos_token_id=102) # add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token decoder = BertGenerationDecoder.from_pretrained("google-bert/bert-base-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102) model = EncoderDecoderModel(encoder=encoder, decoder=decoder) # create tokenizer... tokenizer = BertTokenizer.from_pretrained("google-bert/bert-large-uncased") import json class CodeDataset(Dataset): def __init__(self): with open("data/conala-train.json") as f: self.data = json.load(f) def __len__(self): return len(self.data) def __getitem__(self, idx): intent = self.data[idx]["rewritten_intent"] if self.data[idx]["rewritten_intent"] else self.data[idx]["intent"] return intent, self.data[idx]["snippet"] optimizer = torch.optim.AdamW(params=model.parameters(), lr=1e-3) dataloader = CodeDataset() model = model.to(device) losses = [] epochs = 10 for i in range(epochs): epoch_loss = 0 for idx, (question, answer) in progress_bar(enumerate(dataloader), total=len(dataloader)): input_ids = tokenizer(question, add_special_tokens=False, return_tensors="pt").input_ids.to(device) label_ids = tokenizer(answer, return_tensors="pt").input_ids.to(device) loss = model(input_ids=input_ids, decoder_input_ids=label_ids, labels=label_ids).loss optimizer.zero_grad() loss.backward() optimizer.step() epoch_loss += loss.item() losses.append(epoch_loss) plt.plot(losses, color="green", label="Training Loss") plt.legend(loc = 'upper left') plt.savefig("plot.png")