{ "cells": [ { "cell_type": "code", "execution_count": 83, "metadata": {}, "outputs": [], "source": [ "import gym\n", "import gym_wordle\n", "from stable_baselines3 import DQN, PPO, common\n", "import numpy as np\n", "import tqdm" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ ">\n" ] } ], "source": [ "env = gym_wordle.wordle.WordleEnv()\n", "env = common.monitor.Monitor(env)\n", "\n", "print(env)" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Using cuda device\n", "Wrapping the env in a DummyVecEnv.\n" ] } ], "source": [ "total_timesteps = 1000\n", "model = PPO(\"MlpPolicy\", env, verbose=1)\n", "model.learn(total_timesteps=total_timesteps)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model.save(\"dqn_wordle\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model = PPO.load(\"dqn_wordle\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[16 18 5 15 14 3 3 1 3 3]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n", "[[16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n", "[[16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n", "[[16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [ 0 0 0 0 0 0 0 0 0 0]\n", " [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n", "[[16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n", "[[16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]\n", " [16 18 5 15 14 3 3 1 3 3]] -1.0 True {}\n" ] }, { "ename": "KeyError", "evalue": "'correct'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[82], line 19\u001b[0m\n\u001b[1;32m 15\u001b[0m state, reward, done, info \u001b[38;5;241m=\u001b[39m env\u001b[38;5;241m.\u001b[39mstep(action)\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28mprint\u001b[39m(state, reward, done, info)\n\u001b[0;32m---> 19\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43minfo\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcorrect\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m:\n\u001b[1;32m 20\u001b[0m wins \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 22\u001b[0m \u001b[38;5;66;03m#end_rewards.append(reward == 0)\u001b[39;00m\n\u001b[1;32m 23\u001b[0m \n\u001b[1;32m 24\u001b[0m \u001b[38;5;66;03m#return np.sum(end_rewards) / len(end_rewards)\u001b[39;00m\n", "\u001b[0;31mKeyError\u001b[0m: 'correct'" ] } ], "source": [ "env = gym_wordle.wordle.WordleEnv()\n", "\n", "for i in range(1):\n", " \n", " state = env.reset()\n", "\n", " done = False\n", "\n", " wins = 0\n", "\n", " while not done:\n", "\n", " action, _states = model.predict(state, deterministic=True)\n", "\n", " state, reward, done, info = env.step(action)\n", "\n", " print(state, reward, done, info)\n", "\n", " if info[\"correct\"]:\n", " wins += 1\n", " \n", " #end_rewards.append(reward == 0)\n", " \n", "#return np.sum(end_rewards) / len(end_rewards)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }