9 Commits

Author SHA1 Message Date
Ethan Shapiro
e799c14ece new reward scheme 2024-03-18 11:25:14 -07:00
Ethan Shapiro
bbe9a1891c updated wordle to gymnasium env 2024-03-15 18:19:58 -07:00
Arthur Lu
9172326013 upload wordle env, fix indexing issue in wordle env, attempt to improve reward (no improvement) 2024-03-14 16:47:11 -07:00
Arthur Lu
4836be8121 remove debug prints 2024-03-14 15:00:19 -07:00
Arthur Lu
5672169073 copy the wordle env locally and fix the obs return 2024-03-14 14:49:17 -07:00
Arthur Lu
5ec123e0f1 minor changes 2024-03-13 13:57:23 -07:00
Arthur Lu
e9622b6f68 switch to notebook 2024-03-13 11:04:30 -07:00
ltcptgeneral
83e81722d2 this should probably be working but isn't 2024-03-12 22:14:03 -07:00
ltcptgeneral
320f2f81b7 delete tests 2024-03-12 21:42:59 -07:00
11 changed files with 16518 additions and 154 deletions

3
.gitignore vendored
View File

@@ -1 +1,4 @@
**/data/*
**/*.zip
**/__pycache__
/env

671
dqn_wordle.ipynb Normal file
View File

@@ -0,0 +1,671 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"import gym_wordle\n",
"from stable_baselines3 import DQN, PPO, common\n",
"import numpy as np\n",
"import tqdm"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<Monitor<WordleEnv instance>>\n"
]
}
],
"source": [
"env = gym_wordle.wordle.WordleEnv()\n",
"env = common.monitor.Monitor(env)\n",
"\n",
"print(env)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c52630b65904d5e8e200be505d2121a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Output()"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using cuda device\n",
"Wrapping the env with a `Monitor` wrapper\n",
"Wrapping the env in a DummyVecEnv.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -175 |\n",
"| exploration_rate | 0.525 |\n",
"| time/ | |\n",
"| episodes | 10000 |\n",
"| fps | 4606 |\n",
"| time_elapsed | 10 |\n",
"| total_timesteps | 49989 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -208 |\n",
"| exploration_rate | 0.0502 |\n",
"| time/ | |\n",
"| episodes | 20000 |\n",
"| fps | 1118 |\n",
"| time_elapsed | 89 |\n",
"| total_timesteps | 99980 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 24.6 |\n",
"| n_updates | 12494 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -230 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 30000 |\n",
"| fps | 856 |\n",
"| time_elapsed | 175 |\n",
"| total_timesteps | 149974 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 18.7 |\n",
"| n_updates | 24993 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -242 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 40000 |\n",
"| fps | 766 |\n",
"| time_elapsed | 260 |\n",
"| total_timesteps | 199967 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 24 |\n",
"| n_updates | 37491 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -186 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 50000 |\n",
"| fps | 722 |\n",
"| time_elapsed | 346 |\n",
"| total_timesteps | 249962 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 21.5 |\n",
"| n_updates | 49990 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -183 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 60000 |\n",
"| fps | 694 |\n",
"| time_elapsed | 431 |\n",
"| total_timesteps | 299957 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 17.6 |\n",
"| n_updates | 62489 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -181 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 70000 |\n",
"| fps | 675 |\n",
"| time_elapsed | 517 |\n",
"| total_timesteps | 349953 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 26.8 |\n",
"| n_updates | 74988 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -196 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 80000 |\n",
"| fps | 663 |\n",
"| time_elapsed | 603 |\n",
"| total_timesteps | 399936 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 22.5 |\n",
"| n_updates | 87483 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -174 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 90000 |\n",
"| fps | 653 |\n",
"| time_elapsed | 688 |\n",
"| total_timesteps | 449928 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 21.1 |\n",
"| n_updates | 99981 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -155 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 100000 |\n",
"| fps | 645 |\n",
"| time_elapsed | 774 |\n",
"| total_timesteps | 499920 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 22.8 |\n",
"| n_updates | 112479 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -153 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 110000 |\n",
"| fps | 638 |\n",
"| time_elapsed | 860 |\n",
"| total_timesteps | 549916 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 16 |\n",
"| n_updates | 124978 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -164 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 120000 |\n",
"| fps | 633 |\n",
"| time_elapsed | 947 |\n",
"| total_timesteps | 599915 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 17.8 |\n",
"| n_updates | 137478 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -145 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 130000 |\n",
"| fps | 628 |\n",
"| time_elapsed | 1033 |\n",
"| total_timesteps | 649910 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 17.8 |\n",
"| n_updates | 149977 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -154 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 140000 |\n",
"| fps | 624 |\n",
"| time_elapsed | 1120 |\n",
"| total_timesteps | 699902 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 20.9 |\n",
"| n_updates | 162475 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -192 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 150000 |\n",
"| fps | 621 |\n",
"| time_elapsed | 1206 |\n",
"| total_timesteps | 749884 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 18.3 |\n",
"| n_updates | 174970 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -170 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 160000 |\n",
"| fps | 618 |\n",
"| time_elapsed | 1293 |\n",
"| total_timesteps | 799869 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 17.7 |\n",
"| n_updates | 187467 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -233 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 170000 |\n",
"| fps | 615 |\n",
"| time_elapsed | 1380 |\n",
"| total_timesteps | 849855 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 21.6 |\n",
"| n_updates | 199963 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -146 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 180000 |\n",
"| fps | 613 |\n",
"| time_elapsed | 1466 |\n",
"| total_timesteps | 899847 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 19.4 |\n",
"| n_updates | 212461 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -142 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 190000 |\n",
"| fps | 611 |\n",
"| time_elapsed | 1553 |\n",
"| total_timesteps | 949846 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 22.9 |\n",
"| n_updates | 224961 |\n",
"----------------------------------\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"----------------------------------\n",
"| rollout/ | |\n",
"| ep_len_mean | 5 |\n",
"| ep_rew_mean | -171 |\n",
"| exploration_rate | 0.05 |\n",
"| time/ | |\n",
"| episodes | 200000 |\n",
"| fps | 609 |\n",
"| time_elapsed | 1640 |\n",
"| total_timesteps | 999839 |\n",
"| train/ | |\n",
"| learning_rate | 0.0001 |\n",
"| loss | 20.3 |\n",
"| n_updates | 237459 |\n",
"----------------------------------\n"
]
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n"
],
"text/plain": []
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n",
"</pre>\n"
],
"text/plain": [
"\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<stable_baselines3.dqn.dqn.DQN at 0x294981ca090>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"total_timesteps = 1_000_000\n",
"model = DQN(\"MlpPolicy\", env, verbose=1, device='cuda')\n",
"model.learn(total_timesteps=total_timesteps, log_interval=10_000, progress_bar=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"model.save(\"dqn_new_rewards\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\stable_baselines3\\common\\save_util.py:166: UserWarning: Could not deserialize object lr_schedule. Consider using `custom_objects` argument to replace this object.\n",
"Exception: code() argument 13 must be str, not int\n",
" warnings.warn(\n",
"c:\\Repository\\cse151b-final-project\\env\\Lib\\site-packages\\stable_baselines3\\common\\save_util.py:166: UserWarning: Could not deserialize object exploration_schedule. Consider using `custom_objects` argument to replace this object.\n",
"Exception: code() argument 13 must be str, not int\n",
" warnings.warn(\n"
]
}
],
"source": [
"# model = DQN.load(\"dqn_wordle\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
}
],
"source": [
"env = gym_wordle.wordle.WordleEnv()\n",
"\n",
"for i in range(1000):\n",
" \n",
" state, info = env.reset()\n",
"\n",
" done = False\n",
"\n",
" wins = 0\n",
"\n",
" while not done:\n",
"\n",
" action, _states = model.predict(state, deterministic=True)\n",
"\n",
" state, reward, done, truncated, info = env.step(action)\n",
"\n",
" if info[\"correct\"]:\n",
" wins += 1\n",
"\n",
"print(wins)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(array([[18, 1, 20, 5, 19, 3, 3, 3, 3, 3],\n",
" [14, 15, 9, 12, 25, 2, 3, 2, 2, 2],\n",
" [25, 21, 3, 11, 15, 2, 3, 3, 3, 3],\n",
" [25, 21, 3, 11, 15, 2, 3, 3, 3, 3],\n",
" [ 1, 20, 13, 15, 19, 3, 3, 3, 3, 3],\n",
" [25, 21, 3, 11, 15, 2, 3, 3, 3, 3]], dtype=int64),\n",
" -130)"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"state, reward"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"blah = (14, 1, 9, 22, 5)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"blah in info['guesses']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

7
gym_wordle/__init__.py Normal file
View File

@@ -0,0 +1,7 @@
from gym.envs.registration import register
from .wordle import WordleEnv
register(
id='Wordle-v0',
entry_point='gym_wordle.wordle:WordleEnv'
)

File diff suppressed because it is too large Load Diff

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

93
gym_wordle/utils.py Normal file
View File

@@ -0,0 +1,93 @@
import numpy as np
import numpy.typing as npt
from pathlib import Path
_chars = ' abcdefghijklmnopqrstuvwxyz'
_char_d = {c: i for i, c in enumerate(_chars)}
def to_english(array: npt.NDArray[np.int64]) -> str:
"""Converts a numpy integer array into a corresponding English string.
Args:
array: Word in array (int) form. It is assumed that each integer in the
array is between 0,...,26 (inclusive).
Returns:
A (lowercase) string representation of the word.
"""
return ''.join(_chars[i] for i in array)
def to_array(word: str) -> npt.NDArray[np.int64]:
"""Converts a string of characters into a corresponding numpy array.
Args:
word: Word in string form. It is assumed that each character in the
string is either an empty space ' ' or lowercase alphabetical
character.
Returns:
An array representation of the word.
"""
return np.array([_char_d[c] for c in word])
def get_words(category: str, build: bool = False) -> npt.NDArray[np.int64]:
"""Loads a list of words in array form.
If specified, this will recompute the list from the human-readable list of
words, and save the results in array form.
Args:
category: Either 'guess' or 'solution', which corresponds to the list
of acceptable guess words and the list of acceptable solution words.
build: If True, recomputes and saves the array-version of the computed
list for future access.
Returns:
An array representation of the list of words specified by the category.
This array has two dimensions, and the number of columns is fixed at
five.
"""
assert category in {'guess', 'solution'}
arr_path = Path(__file__).parent / f'dictionary/{category}_list.npy'
if build:
list_path = Path(__file__).parent / f'dictionary/{category}_list.csv'
with open(list_path, 'r') as f:
words = np.array([to_array(line.strip()) for line in f])
np.save(arr_path, words)
return np.load(arr_path)
def play():
"""Play Wordle yourself!"""
import gym
import gym_wordle
env = gym.make('Wordle-v0') # load the environment
env.reset()
solution = to_english(env.unwrapped.solution_space[env.solution]).upper() # no peeking!
done = False
while not done:
action = -1
# in general, the environment won't be forgiving if you input an
# invalid word, but for this function I want to let you screw up user
# input without consequence, so just loops until valid input is taken
while not env.action_space.contains(action):
guess = input('Guess: ')
action = env.unwrapped.action_space.index_of(to_array(guess))
state, reward, done, info = env.step(action)
env.render()
print(f"The word was {solution}")

340
gym_wordle/wordle.py Normal file
View File

@@ -0,0 +1,340 @@
import gymnasium as gym
import numpy as np
import numpy.typing as npt
from sty import fg, bg, ef, rs
from collections import Counter
from gym_wordle.utils import to_english, to_array, get_words
from typing import Optional
from collections import defaultdict
class WordList(gym.spaces.Discrete):
"""Super class for defining a space of valid words according to a specified
list.
The space is a subclass of gym.spaces.Discrete, where each element
corresponds to an index of a valid word in the word list. The obfuscation
is necessary for more direct implementation of RL algorithms, which expect
spaces of less sophisticated form.
In addition to the default methods of the Discrete space, it implements
a __getitem__ method for easy index lookup, and an index_of method to
convert potential words into their corresponding index (if they exist).
"""
def __init__(self, words: npt.NDArray[np.int64], **kwargs):
"""
Args:
words: Collection of words in array form with shape (_, 5), where
each word is a row of the array. Each array element is an integer
between 0,...,26 (inclusive).
kwargs: See documentation for gym.spaces.MultiDiscrete
"""
super().__init__(words.shape[0], **kwargs)
self.words = words
def __getitem__(self, index: int) -> npt.NDArray[np.int64]:
"""Obtains the (int-encoded) word associated with the given index.
Args:
index: Index for the list of words.
Returns:
Associated word at the position specified by index.
"""
return self.words[index]
def index_of(self, word: npt.NDArray[np.int64]) -> int:
"""Given a word, determine its index in the list (if it exists),
otherwise returning -1 if no index exists.
Args:
word: Word to find in the word list.
Returns:
The index of the given word if it exists, otherwise -1.
"""
try:
index, = np.nonzero((word == self.words).all(axis=1))
return index[0]
except:
return -1
class SolutionList(WordList):
"""Space for *solution* words to the Wordle environment.
In the game Wordle, there are two different collections of words:
* "guesses", which the game accepts as valid words to use to guess the
answer.
* "solutions", which the game uses to choose solutions from.
Of course, the set of solutions is a strict subset of the set of guesses.
This class represents the set of solution words.
"""
def __init__(self, **kwargs):
"""
Args:
kwargs: See documentation for gym.spaces.MultiDiscrete
"""
words = get_words('solution')
super().__init__(words, **kwargs)
class WordleObsSpace(gym.spaces.Box):
"""Implementation of the state (observation) space in terms of gym
primitives, in this case, gym.spaces.Box.
The Wordle observation space can be thought of as a 6x5 array with two
channels:
- the character channel, indicating which characters are placed on the
board (unfilled rows are marked with the empty character, 0)
- the flag channel, indicating the in-game information associated with
each character's placement (green highlight, yellow highlight, etc.)
where there are 6 rows, one for each turn in the game, and 5 columns, since
the solution will always be a word of length 5.
For simplicity, and compatibility with stable_baselines algorithms,
this multichannel is modeled as a 6x10 array, where the two channels are
horizontally appended (along columns). Thus each row in the observation
should be interpreted as c0 c1 c2 c3 c4 f0 f1 f2 f3 f4 when the word is
c0...c4 and its associated flags are f0...f4.
"""
def __init__(self, **kwargs):
self.n_rows = 6
self.n_cols = 5
self.max_char = 26
self.max_flag = 4
low = np.zeros((self.n_rows, 2*self.n_cols))
high = np.c_[np.full((self.n_rows, self.n_cols), self.max_char),
np.full((self.n_rows, self.n_cols), self.max_flag)]
super().__init__(low, high, dtype=np.int64, **kwargs)
class GuessList(WordList):
"""Space for *guess* words to the Wordle environment.
This class represents the set of guess words.
"""
def __init__(self, **kwargs):
"""
Args:
kwargs: See documentation for gym.spaces.MultiDiscrete
"""
words = get_words('guess')
super().__init__(words, **kwargs)
class WordleEnv(gym.Env):
metadata = {'render.modes': ['human']}
# Character flag codes
no_char = 0
right_pos = 1
wrong_pos = 2
wrong_char = 3
def __init__(self):
super().__init__()
self.action_space = GuessList()
self.solution_space = SolutionList()
self.observation_space = WordleObsSpace()
self._highlights = {
self.right_pos: (bg.green, bg.rs),
self.wrong_pos: (bg.yellow, bg.rs),
self.wrong_char: ('', ''),
self.no_char: ('', ''),
}
self.n_rounds = 6
self.n_letters = 5
self.info = {
'correct': False,
'guesses': set(),
'known_positions': np.full(5, -1), # -1 for unknown, else letter index
'known_letters': set(), # Letters known to be in the word
'not_in_word': set(), # Letters known not to be in the word
'tried_positions': defaultdict(set) # Positions tried for each letter
}
def _highlighter(self, char: str, flag: int) -> str:
"""Terminal renderer functionality. Properly highlights a character
based on the flag associated with it.
Args:
char: Character in question.
flag: Associated flag, one of:
- 0: no character (render no background)
- 1: right position (render green background)
- 2: wrong position (render yellow background)
- 3: wrong character (render no background)
Returns:
Correct ASCII sequence producing the desired character in the
correct background.
"""
front, back = self._highlights[flag]
return front + char + back
def reset(self, seed=None, options=None):
"""Reset the environment to an initial state and returns an initial
observation.
Note: The observation space instance should be a Box space.
Returns:
state (object): The initial observation of the space.
"""
self.round = 0
self.solution = self.solution_space.sample()
self.soln_hash = set(self.solution_space[self.solution])
self.state = np.zeros((self.n_rounds, 2 * self.n_letters), dtype=np.int64)
self.info = {
'correct': False,
'guesses': set(),
'known_positions': np.full(5, -1),
'known_letters': set(),
'not_in_word': set(),
'tried_positions': defaultdict(set)
}
self.simulate_first_guess()
return self.state, self.info
def simulate_first_guess(self):
fixed_first_guess = "rates"
fixed_first_guess_array = to_array(fixed_first_guess)
# Simulate the feedback for each letter in the fixed first guess
feedback = np.zeros(self.n_letters, dtype=int) # Initialize feedback array
for i, letter in enumerate(fixed_first_guess_array):
if letter in self.solution_space[self.solution]:
if letter == self.solution_space[self.solution][i]:
feedback[i] = 1 # Correct position
else:
feedback[i] = 2 # Correct letter, wrong position
else:
feedback[i] = 3 # Letter not in word
# Update the state to reflect the fixed first guess and its feedback
self.state[0, :self.n_letters] = fixed_first_guess_array
self.state[0, self.n_letters:] = feedback
# Update self.info based on the feedback
for i, flag in enumerate(feedback):
if flag == self.right_pos:
# Mark letter as correctly placed
self.info['known_positions'][i] = fixed_first_guess_array[i]
elif flag == self.wrong_pos:
# Note the letter is in the word but in a different position
self.info['known_letters'].add(fixed_first_guess_array[i])
elif flag == self.wrong_char:
# Note the letter is not in the word
self.info['not_in_word'].add(fixed_first_guess_array[i])
# Since we're simulating the first guess, increment the round counter
self.round = 1
def render(self, mode: str = 'human'):
"""Renders the Wordle environment.
Currently supported render modes:
- human: renders the Wordle game to the terminal.
Args:
mode: the mode to render with.
"""
if mode == 'human':
for row in self.state:
text = ''.join(map(
self._highlighter,
to_english(row[:self.n_letters]).upper(),
row[self.n_letters:]
))
print(text)
else:
super().render(mode=mode)
def step(self, action):
assert self.action_space.contains(action), 'Invalid word!'
guessed_word = self.action_space[action]
solution_word = self.solution_space[self.solution]
reward = 0
correct_guess = np.array_equal(guessed_word, solution_word)
# Initialize flags for current guess
current_flags = np.full(self.n_letters, self.wrong_char)
# Track newly discovered information
new_info = False
for i in range(self.n_letters):
guessed_letter = guessed_word[i]
if guessed_letter in solution_word:
# Penalize for reusing a letter found to not be in the word
if guessed_letter in self.info['not_in_word']:
reward -= 2
# Handle correct letter in the correct position
if guessed_letter == solution_word[i]:
current_flags[i] = self.right_pos
if self.info['known_positions'][i] != guessed_letter:
reward += 10 # Large reward for new correct placement
new_info = True
self.info['known_positions'][i] = guessed_letter
else:
reward += 20 # Large reward for repeating correct placement
else:
current_flags[i] = self.wrong_pos
if guessed_letter not in self.info['known_letters'] or i not in self.info['tried_positions'][guessed_letter]:
reward += 10 # Reward for guessing a letter in a new position
new_info = True
else:
reward -= 20 # Penalize for not leveraging known information
self.info['known_letters'].add(guessed_letter)
self.info['tried_positions'][guessed_letter].add(i)
else:
# New incorrect letter
if guessed_letter not in self.info['not_in_word']:
reward -= 2 # Penalize for guessing a letter not in the word
self.info['not_in_word'].add(guessed_letter)
new_info = True
else:
reward -= 15 # Larger penalty for repeating an incorrect letter
# Update observation state with the current guess and flags
self.state[self.round, :self.n_letters] = guessed_word
self.state[self.round, self.n_letters:] = current_flags
# Check if the game is over
done = self.round == self.n_rounds - 1 or correct_guess
self.info['correct'] = correct_guess
if correct_guess:
reward += 100 # Major reward for winning
elif done:
reward -= 50 # Penalty for losing without using new information effectively
elif not new_info:
reward -= 10 # Penalty if no new information was used in this guess
self.round += 1
return self.state, reward, done, False, self.info

File diff suppressed because one or more lines are too long

61
test.py
View File

@@ -1,61 +0,0 @@
from torch.utils.data import Dataset
from transformers import BertGenerationEncoder, BertGenerationDecoder, EncoderDecoderModel, BertTokenizer
from tqdm import tqdm as progress_bar
import torch
import matplotlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
encoder = BertGenerationEncoder.from_pretrained("google-bert/bert-base-uncased", bos_token_id=101, eos_token_id=102)
# add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token
decoder = BertGenerationDecoder.from_pretrained("google-bert/bert-base-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102)
model = EncoderDecoderModel(encoder=encoder, decoder=decoder)
# create tokenizer...
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")
import json
class CodeDataset(Dataset):
def __init__(self):
with open("data/conala-train.json") as f:
self.data = json.load(f)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
intent = self.data[idx]["rewritten_intent"] if self.data[idx]["rewritten_intent"] else self.data[idx]["intent"]
return intent, self.data[idx]["snippet"]
optimizer = torch.optim.AdamW(params=model.parameters(), lr=1e-3)
dataloader = CodeDataset()
model = model.to(device)
losses = []
epochs = 10
for i in range(epochs):
epoch_loss = 0
for idx, (question, answer) in progress_bar(enumerate(dataloader), total=len(dataloader)):
input_ids = tokenizer(question, add_special_tokens=False, return_tensors="pt").input_ids.to(device)
label_ids = tokenizer(answer, return_tensors="pt").input_ids.to(device)
loss = model(input_ids=input_ids, decoder_input_ids=label_ids, labels=label_ids).loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
losses.append(epoch_loss)
plt.plot(losses, color="green", label="Training Loss")
plt.legend(loc = 'upper left')
plt.savefig("plot.png")