mirror of
https://github.com/ltcptgeneral/cse151b-final-project.git
synced 2024-12-27 10:29:09 +00:00
attempt to use the other wordle gym, causing cuda errors
This commit is contained in:
parent
5ec123e0f1
commit
f641d77c47
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
|||||||
**/data/*
|
**/data/*
|
||||||
**/*.zip
|
**/*.zip
|
||||||
|
**/__pycache__
|
114
dqn_wordle.ipynb
114
dqn_wordle.ipynb
@ -1,114 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"import gym\n",
|
|
||||||
"import gym_wordle\n",
|
|
||||||
"from stable_baselines3 import DQN\n",
|
|
||||||
"import numpy as np\n",
|
|
||||||
"import tqdm"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"env = gym.make(\"Wordle-v0\")\n",
|
|
||||||
"\n",
|
|
||||||
"print(env)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 35,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"total_timesteps = 100000\n",
|
|
||||||
"model = DQN(\"MlpPolicy\", env, verbose=0)\n",
|
|
||||||
"model.learn(total_timesteps=total_timesteps, progress_bar=True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"def test(model):\n",
|
|
||||||
"\n",
|
|
||||||
" end_rewards = []\n",
|
|
||||||
"\n",
|
|
||||||
" for i in range(1000):\n",
|
|
||||||
" \n",
|
|
||||||
" state = env.reset()\n",
|
|
||||||
"\n",
|
|
||||||
" done = False\n",
|
|
||||||
"\n",
|
|
||||||
" while not done:\n",
|
|
||||||
"\n",
|
|
||||||
" action, _states = model.predict(state, deterministic=True)\n",
|
|
||||||
"\n",
|
|
||||||
" state, reward, done, info = env.step(action)\n",
|
|
||||||
" \n",
|
|
||||||
" end_rewards.append(reward == 0)\n",
|
|
||||||
" \n",
|
|
||||||
" return np.sum(end_rewards) / len(end_rewards)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model.save(\"dqn_wordle\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model = DQN.load(\"dqn_wordle\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"print(test(model))"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3 (ipykernel)",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.8.10"
|
|
||||||
}
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
47
dqn_wordle.py
Normal file
47
dqn_wordle.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
# %%
|
||||||
|
from stable_baselines3 import DQN
|
||||||
|
import numpy as np
|
||||||
|
import wordle.state
|
||||||
|
import gym
|
||||||
|
|
||||||
|
# %%
|
||||||
|
env = gym.make("WordleEnvFull-v0")
|
||||||
|
|
||||||
|
print(env)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
total_timesteps = 100000
|
||||||
|
model = DQN("MlpPolicy", env, verbose=0)
|
||||||
|
model.learn(total_timesteps=total_timesteps, progress_bar=True)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
def test(model):
|
||||||
|
|
||||||
|
end_rewards = []
|
||||||
|
|
||||||
|
for i in range(1000):
|
||||||
|
|
||||||
|
state = env.reset()
|
||||||
|
|
||||||
|
done = False
|
||||||
|
|
||||||
|
while not done:
|
||||||
|
|
||||||
|
action, _states = model.predict(state, deterministic=True)
|
||||||
|
|
||||||
|
state, reward, done, info = env.step(action)
|
||||||
|
|
||||||
|
end_rewards.append(reward == 0)
|
||||||
|
|
||||||
|
return np.sum(end_rewards) / len(end_rewards)
|
||||||
|
|
||||||
|
# %%
|
||||||
|
model.save("dqn_wordle")
|
||||||
|
|
||||||
|
# %%
|
||||||
|
model = DQN.load("dqn_wordle")
|
||||||
|
|
||||||
|
# %%
|
||||||
|
print(test(model))
|
||||||
|
|
||||||
|
|
83
wordle/__init__.py
Normal file
83
wordle/__init__.py
Normal file
@ -0,0 +1,83 @@
|
|||||||
|
from gym.envs.registration import (
|
||||||
|
registry,
|
||||||
|
register,
|
||||||
|
make,
|
||||||
|
spec,
|
||||||
|
load_env_plugins as _load_env_plugins,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Classic
|
||||||
|
# ----------------------------------------
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv10-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv10",
|
||||||
|
max_episode_steps=200,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv100-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv100",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv100OneAction-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv100OneAction",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv100TwoAction-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv100TwoAction",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv100FullAction-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv100FullAction",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv100WithMask-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv100WithMask",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv1000-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv1000",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv1000WithMask-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv1000WithMask",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnv1000FullAction-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnv1000FullAction",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnvFull-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnvFull",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnvReal-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnvReal",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
register(
|
||||||
|
id="WordleEnvRealWithMask-v0",
|
||||||
|
entry_point="wordle.wordle:WordleEnvRealWithMask",
|
||||||
|
max_episode_steps=500,
|
||||||
|
)
|
3
wordle/const.py
Normal file
3
wordle/const.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
WORDLE_CHARS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
||||||
|
WORDLE_N = 5
|
||||||
|
REWARD = 10
|
162
wordle/state.py
Normal file
162
wordle/state.py
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
"""
|
||||||
|
Keep the state in a 1D int array
|
||||||
|
|
||||||
|
index[0] = remaining steps
|
||||||
|
Rest of data is laid out as binary array
|
||||||
|
|
||||||
|
[1..27] = whether char has been guessed or not
|
||||||
|
|
||||||
|
[[status, status, status, status, status]
|
||||||
|
for _ in "ABCD..."]
|
||||||
|
where status has codes
|
||||||
|
[1, 0, 0] - char is definitely not in this spot
|
||||||
|
[0, 1, 0] - char is maybe in this spot
|
||||||
|
[0, 0, 1] - char is definitely in this spot
|
||||||
|
"""
|
||||||
|
import collections
|
||||||
|
from typing import List
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from wordle.const import WORDLE_CHARS, WORDLE_N
|
||||||
|
|
||||||
|
|
||||||
|
WordleState = np.ndarray
|
||||||
|
|
||||||
|
|
||||||
|
def get_nvec(max_turns: int):
|
||||||
|
return [max_turns] + [2] * len(WORDLE_CHARS) + [2] * 3 * WORDLE_N * len(WORDLE_CHARS)
|
||||||
|
|
||||||
|
|
||||||
|
def new(max_turns: int) -> WordleState:
|
||||||
|
return np.array(
|
||||||
|
[max_turns] + [0] * len(WORDLE_CHARS) + [0, 1, 0] * WORDLE_N * len(WORDLE_CHARS),
|
||||||
|
dtype=np.int32)
|
||||||
|
|
||||||
|
|
||||||
|
def remaining_steps(state: WordleState) -> int:
|
||||||
|
return state[0]
|
||||||
|
|
||||||
|
|
||||||
|
NO = 0
|
||||||
|
SOMEWHERE = 1
|
||||||
|
YES = 2
|
||||||
|
|
||||||
|
|
||||||
|
def update_from_mask(state: WordleState, word: str, mask: List[int]) -> WordleState:
|
||||||
|
"""
|
||||||
|
return a copy of state that has been updated to new state
|
||||||
|
|
||||||
|
From a mask we need slighty different logic since we don't know the
|
||||||
|
goal word.
|
||||||
|
|
||||||
|
:param state:
|
||||||
|
:param word:
|
||||||
|
:param goal_word:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
state = state.copy()
|
||||||
|
|
||||||
|
prior_yes = []
|
||||||
|
prior_maybe = []
|
||||||
|
# We need two passes because first pass sets definitely yesses
|
||||||
|
# second pass sets the no's for those who aren't already yes
|
||||||
|
state[0] -= 1
|
||||||
|
for i, c in enumerate(word):
|
||||||
|
cint = ord(c) - ord(WORDLE_CHARS[0])
|
||||||
|
offset = 1 + len(WORDLE_CHARS) + cint * WORDLE_N * 3
|
||||||
|
state[1 + cint] = 1
|
||||||
|
if mask[i] == YES:
|
||||||
|
prior_yes.append(c)
|
||||||
|
# char at position i = yes, all other chars at position i == no
|
||||||
|
state[offset + 3 * i:offset + 3 * i + 3] = [0, 0, 1]
|
||||||
|
for ocint in range(len(WORDLE_CHARS)):
|
||||||
|
if ocint != cint:
|
||||||
|
oc_offset = 1 + len(WORDLE_CHARS) + ocint * WORDLE_N * 3
|
||||||
|
state[oc_offset + 3 * i:oc_offset + 3 * i + 3] = [1, 0, 0]
|
||||||
|
|
||||||
|
for i, c in enumerate(word):
|
||||||
|
cint = ord(c) - ord(WORDLE_CHARS[0])
|
||||||
|
offset = 1 + len(WORDLE_CHARS) + cint * WORDLE_N * 3
|
||||||
|
if mask[i] == SOMEWHERE:
|
||||||
|
prior_maybe.append(c)
|
||||||
|
# Char at position i = no, other chars stay as they are
|
||||||
|
state[offset + 3 * i:offset + 3 * i + 3] = [1, 0, 0]
|
||||||
|
elif mask[i] == NO:
|
||||||
|
# Need to check this first in case there's prior maybe + yes
|
||||||
|
if c in prior_maybe:
|
||||||
|
# Then the maybe could be anywhere except here
|
||||||
|
state[offset+3*i:offset+3*i+3] = [1, 0, 0]
|
||||||
|
elif c in prior_yes:
|
||||||
|
# No maybe, definitely a yes, so it's zero everywhere except the yesses
|
||||||
|
for j in range(WORDLE_N):
|
||||||
|
# Only flip no if previously was maybe
|
||||||
|
if state[offset + 3 * j:offset + 3 * j + 3][1] == 1:
|
||||||
|
state[offset + 3 * j:offset + 3 * j + 3] = [1, 0, 0]
|
||||||
|
else:
|
||||||
|
# Just straight up no
|
||||||
|
state[offset:offset+3*WORDLE_N] = [1, 0, 0]*WORDLE_N
|
||||||
|
|
||||||
|
return state
|
||||||
|
|
||||||
|
|
||||||
|
def get_mask(word: str, goal_word: str) -> List[int]:
|
||||||
|
# Definite yesses first
|
||||||
|
mask = [0, 0, 0, 0, 0]
|
||||||
|
counts = collections.Counter(goal_word)
|
||||||
|
for i, c in enumerate(word):
|
||||||
|
if goal_word[i] == c:
|
||||||
|
mask[i] = 2
|
||||||
|
counts[c] -= 1
|
||||||
|
|
||||||
|
for i, c in enumerate(word):
|
||||||
|
if mask[i] == 2:
|
||||||
|
continue
|
||||||
|
elif c in counts:
|
||||||
|
if counts[c] > 0:
|
||||||
|
mask[i] = 1
|
||||||
|
counts[c] -= 1
|
||||||
|
else:
|
||||||
|
for j in range(i+1, len(mask)):
|
||||||
|
if mask[j] == 2:
|
||||||
|
continue
|
||||||
|
mask[j] = 0
|
||||||
|
|
||||||
|
return mask
|
||||||
|
|
||||||
|
def update_mask(state: WordleState, word: str, goal_word: str) -> WordleState:
|
||||||
|
"""
|
||||||
|
return a copy of state that has been updated to new state
|
||||||
|
|
||||||
|
:param state:
|
||||||
|
:param word:
|
||||||
|
:param goal_word:
|
||||||
|
:return:
|
||||||
|
"""
|
||||||
|
mask = get_mask(word, goal_word)
|
||||||
|
return update_from_mask(state, word, mask)
|
||||||
|
|
||||||
|
|
||||||
|
def update(state: WordleState, word: str, goal_word: str) -> WordleState:
|
||||||
|
state = state.copy()
|
||||||
|
|
||||||
|
state[0] -= 1
|
||||||
|
for i, c in enumerate(word):
|
||||||
|
cint = ord(c) - ord(WORDLE_CHARS[0])
|
||||||
|
offset = 1 + len(WORDLE_CHARS) + cint * WORDLE_N * 3
|
||||||
|
state[1 + cint] = 1
|
||||||
|
if goal_word[i] == c:
|
||||||
|
# char at position i = yes, all other chars at position i == no
|
||||||
|
state[offset + 3 * i:offset + 3 * i + 3] = [0, 0, 1]
|
||||||
|
for ocint in range(len(WORDLE_CHARS)):
|
||||||
|
if ocint != cint:
|
||||||
|
oc_offset = 1 + len(WORDLE_CHARS) + ocint * WORDLE_N * 3
|
||||||
|
state[oc_offset + 3 * i:oc_offset + 3 * i + 3] = [1, 0, 0]
|
||||||
|
elif c in goal_word:
|
||||||
|
# Char at position i = no, other chars stay as they are
|
||||||
|
state[offset + 3 * i:offset + 3 * i + 3] = [1, 0, 0]
|
||||||
|
else:
|
||||||
|
# Char at all positions = no
|
||||||
|
state[offset:offset + 3 * WORDLE_N] = [1, 0, 0] * WORDLE_N
|
||||||
|
|
||||||
|
return state
|
||||||
|
|
173
wordle/wordle.py
Normal file
173
wordle/wordle.py
Normal file
@ -0,0 +1,173 @@
|
|||||||
|
import os
|
||||||
|
from typing import Optional, List
|
||||||
|
|
||||||
|
import gym
|
||||||
|
from gym import spaces
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import wordle.state
|
||||||
|
from wordle.const import WORDLE_N, REWARD
|
||||||
|
|
||||||
|
CUR_PATH = os.environ.get('PYTHONPATH', '.')
|
||||||
|
import os
|
||||||
|
dirname = os.path.dirname(__file__)
|
||||||
|
VALID_WORDS_PATH = f'{dirname}/wordle_words.txt'
|
||||||
|
|
||||||
|
|
||||||
|
def _load_words(limit: Optional[int]=None) -> List[str]:
|
||||||
|
with open(VALID_WORDS_PATH, 'r') as f:
|
||||||
|
lines = [x.strip().upper() for x in f.readlines()]
|
||||||
|
if not limit:
|
||||||
|
return lines
|
||||||
|
else:
|
||||||
|
return lines[:limit]
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnvBase(gym.Env):
|
||||||
|
"""
|
||||||
|
Actions:
|
||||||
|
Can play any 5 letter word in vocabulary
|
||||||
|
* 13k for full vocab
|
||||||
|
State space is defined as:
|
||||||
|
* 6 possibilities for turns (WORDLE_TURNS)
|
||||||
|
* Each VALID_CHAR has a state of 0/1 for whether it's been guessed before
|
||||||
|
* For each in VALID_CHARS [A-Z] can be in one of 3^WORDLE_N states: (No, Maybe, Yes)
|
||||||
|
for full game, this is (3^5)^26
|
||||||
|
Each state has 1 + 5*26 possibilities
|
||||||
|
Reward:
|
||||||
|
Reward is 10 for guessing the right word, -10 for not guessing the right word after 6 guesses.
|
||||||
|
Starting State:
|
||||||
|
Random goal word
|
||||||
|
Initial state with turn 0, all chars Unvisited + Maybe
|
||||||
|
"""
|
||||||
|
def __init__(self, words: List[str],
|
||||||
|
max_turns: int,
|
||||||
|
allowable_words: Optional[int] = None,
|
||||||
|
frequencies: Optional[List[float]]=None,
|
||||||
|
mask_based_state_updates: bool=False):
|
||||||
|
assert all(len(w) == WORDLE_N for w in words), f'Not all words of length {WORDLE_N}, {words}'
|
||||||
|
self.words = words
|
||||||
|
self.max_turns = max_turns
|
||||||
|
self.allowable_words = allowable_words
|
||||||
|
self.mask_based_state_updates = mask_based_state_updates
|
||||||
|
if not self.allowable_words:
|
||||||
|
self.allowable_words = len(self.words)
|
||||||
|
|
||||||
|
self.frequencies = None
|
||||||
|
if frequencies:
|
||||||
|
assert len(words) == len(frequencies), f'{len(words), len(frequencies)}'
|
||||||
|
self.frequencies = np.array(frequencies, dtype=np.float32) / sum(frequencies)
|
||||||
|
|
||||||
|
self.action_space = spaces.Discrete(len(self.words))
|
||||||
|
self.observation_space = spaces.MultiDiscrete(wordle.state.get_nvec(self.max_turns))
|
||||||
|
|
||||||
|
self.done = True
|
||||||
|
self.goal_word: int = -1
|
||||||
|
|
||||||
|
self.state: wordle.state.WordleState = None
|
||||||
|
self.state_updater = wordle.state.update
|
||||||
|
if self.mask_based_state_updates:
|
||||||
|
self.state_updater = wordle.state.update_mask
|
||||||
|
|
||||||
|
def step(self, action: int):
|
||||||
|
if self.done:
|
||||||
|
raise ValueError(
|
||||||
|
"You are calling 'step()' even though this "
|
||||||
|
"environment has already returned done = True. You "
|
||||||
|
"should always call 'reset()' once you receive 'done = "
|
||||||
|
"True' -- any further steps are undefined behavior."
|
||||||
|
)
|
||||||
|
self.state = self.state_updater(state=self.state,
|
||||||
|
word=self.words[action],
|
||||||
|
goal_word=self.words[self.goal_word])
|
||||||
|
|
||||||
|
reward = 0
|
||||||
|
if action == self.goal_word:
|
||||||
|
self.done = True
|
||||||
|
#reward = REWARD
|
||||||
|
if wordle.state.remaining_steps(self.state) == self.max_turns-1:
|
||||||
|
reward = 0#-10*REWARD # No reward for guessing off the bat
|
||||||
|
else:
|
||||||
|
#reward = REWARD*(self.state.remaining_steps() + 1) / self.max_turns
|
||||||
|
reward = REWARD
|
||||||
|
elif wordle.state.remaining_steps(self.state) == 0:
|
||||||
|
self.done = True
|
||||||
|
reward = -REWARD
|
||||||
|
|
||||||
|
return self.state.copy(), reward, self.done, False, {"goal_id": self.goal_word}
|
||||||
|
|
||||||
|
def reset(self, options = None, seed: Optional[int] = None):
|
||||||
|
self.state = wordle.state.new(self.max_turns)
|
||||||
|
self.done = False
|
||||||
|
self.goal_word = int(np.random.random()*self.allowable_words)
|
||||||
|
|
||||||
|
return self.state.copy(), {"goal_id": self.goal_word}
|
||||||
|
|
||||||
|
def set_goal_word(self, goal_word: str):
|
||||||
|
self.goal_word = self.words.index(goal_word)
|
||||||
|
|
||||||
|
def set_goal_id(self, goal_id: int):
|
||||||
|
self.goal_word = goal_id
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv10(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(10), max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv100(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(100), max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv100OneAction(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(100), allowable_words=1, max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv100WithMask(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(100), max_turns=6,
|
||||||
|
mask_based_state_updates=True)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv100TwoAction(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(100), allowable_words=2, max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv100FullAction(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(), allowable_words=100, max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv1000(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(1000), max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv1000WithMask(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(1000), max_turns=6,
|
||||||
|
mask_based_state_updates=True)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnv1000FullAction(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(), allowable_words=1000, max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnvFull(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(), max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnvReal(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(), allowable_words=2315, max_turns=6)
|
||||||
|
|
||||||
|
|
||||||
|
class WordleEnvRealWithMask(WordleEnvBase):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__(words=_load_words(), allowable_words=2315, max_turns=6,
|
||||||
|
mask_based_state_updates=True)
|
12972
wordle/wordle_words.txt
Normal file
12972
wordle/wordle_words.txt
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user