new reward scheme

This commit is contained in:
Ethan Shapiro
2024-03-18 11:25:14 -07:00
parent bbe9a1891c
commit e799c14ece
3 changed files with 817 additions and 333 deletions

View File

@@ -6,6 +6,7 @@ from sty import fg, bg, ef, rs
from collections import Counter
from gym_wordle.utils import to_english, to_array, get_words
from typing import Optional
from collections import defaultdict
class WordList(gym.spaces.Discrete):
@@ -160,7 +161,14 @@ class WordleEnv(gym.Env):
self.n_rounds = 6
self.n_letters = 5
self.info = {'correct': False, 'guesses': set()}
self.info = {
'correct': False,
'guesses': set(),
'known_positions': np.full(5, -1), # -1 for unknown, else letter index
'known_letters': set(), # Letters known to be in the word
'not_in_word': set(), # Letters known not to be in the word
'tried_positions': defaultdict(set) # Positions tried for each letter
}
def _highlighter(self, char: str, flag: int) -> str:
"""Terminal renderer functionality. Properly highlights a character
@@ -192,13 +200,57 @@ class WordleEnv(gym.Env):
"""
self.round = 0
self.solution = self.solution_space.sample()
self.soln_hash = set(self.solution_space[self.solution])
self.state = np.zeros((self.n_rounds, 2 * self.n_letters), dtype=np.int64)
self.info = {'correct': False, 'guesses': set()}
self.info = {
'correct': False,
'guesses': set(),
'known_positions': np.full(5, -1),
'known_letters': set(),
'not_in_word': set(),
'tried_positions': defaultdict(set)
}
self.simulate_first_guess()
return self.state, self.info
def simulate_first_guess(self):
fixed_first_guess = "rates"
fixed_first_guess_array = to_array(fixed_first_guess)
# Simulate the feedback for each letter in the fixed first guess
feedback = np.zeros(self.n_letters, dtype=int) # Initialize feedback array
for i, letter in enumerate(fixed_first_guess_array):
if letter in self.solution_space[self.solution]:
if letter == self.solution_space[self.solution][i]:
feedback[i] = 1 # Correct position
else:
feedback[i] = 2 # Correct letter, wrong position
else:
feedback[i] = 3 # Letter not in word
# Update the state to reflect the fixed first guess and its feedback
self.state[0, :self.n_letters] = fixed_first_guess_array
self.state[0, self.n_letters:] = feedback
# Update self.info based on the feedback
for i, flag in enumerate(feedback):
if flag == self.right_pos:
# Mark letter as correctly placed
self.info['known_positions'][i] = fixed_first_guess_array[i]
elif flag == self.wrong_pos:
# Note the letter is in the word but in a different position
self.info['known_letters'].add(fixed_first_guess_array[i])
elif flag == self.wrong_char:
# Note the letter is not in the word
self.info['not_in_word'].add(fixed_first_guess_array[i])
# Since we're simulating the first guess, increment the round counter
self.round = 1
def render(self, mode: str = 'human'):
"""Renders the Wordle environment.
@@ -220,67 +272,69 @@ class WordleEnv(gym.Env):
super().render(mode=mode)
def step(self, action):
"""Run one step of the Wordle game. Every game must be previously
initialized by a call to the `reset` method.
Args:
action: Word guessed by the agent.
Returns:
state (object): Wordle game state after the guess.
reward (float): Reward associated with the guess.
done (bool): Whether the game has ended.
info (dict): Auxiliary diagnostic information.
"""
assert self.action_space.contains(action), 'Invalid word!'
action = self.action_space[action]
solution = self.solution_space[self.solution]
guessed_word = self.action_space[action]
solution_word = self.solution_space[self.solution]
self.state[self.round][:self.n_letters] = action
reward = 0
correct_guess = np.array_equal(guessed_word, solution_word)
counter = Counter()
for i, char in enumerate(action):
flag_i = i + self.n_letters
counter[char] += 1
# Initialize flags for current guess
current_flags = np.full(self.n_letters, self.wrong_char)
if char == solution[i]:
self.state[self.round, flag_i] = self.right_pos
elif counter[char] <= (char == solution).sum():
self.state[self.round, flag_i] = self.wrong_pos
# Track newly discovered information
new_info = False
for i in range(self.n_letters):
guessed_letter = guessed_word[i]
if guessed_letter in solution_word:
# Penalize for reusing a letter found to not be in the word
if guessed_letter in self.info['not_in_word']:
reward -= 2
# Handle correct letter in the correct position
if guessed_letter == solution_word[i]:
current_flags[i] = self.right_pos
if self.info['known_positions'][i] != guessed_letter:
reward += 10 # Large reward for new correct placement
new_info = True
self.info['known_positions'][i] = guessed_letter
else:
reward += 20 # Large reward for repeating correct placement
else:
current_flags[i] = self.wrong_pos
if guessed_letter not in self.info['known_letters'] or i not in self.info['tried_positions'][guessed_letter]:
reward += 10 # Reward for guessing a letter in a new position
new_info = True
else:
reward -= 20 # Penalize for not leveraging known information
self.info['known_letters'].add(guessed_letter)
self.info['tried_positions'][guessed_letter].add(i)
else:
self.state[self.round, flag_i] = self.wrong_char
# New incorrect letter
if guessed_letter not in self.info['not_in_word']:
reward -= 2 # Penalize for guessing a letter not in the word
self.info['not_in_word'].add(guessed_letter)
new_info = True
else:
reward -= 15 # Larger penalty for repeating an incorrect letter
# Update observation state with the current guess and flags
self.state[self.round, :self.n_letters] = guessed_word
self.state[self.round, self.n_letters:] = current_flags
# Check if the game is over
done = self.round == self.n_rounds - 1 or correct_guess
self.info['correct'] = correct_guess
if correct_guess:
reward += 100 # Major reward for winning
elif done:
reward -= 50 # Penalty for losing without using new information effectively
elif not new_info:
reward -= 10 # Penalty if no new information was used in this guess
self.round += 1
correct = (action == solution).all()
game_over = (self.round == self.n_rounds)
done = correct or game_over
reward = 0
# correct spot
reward += np.sum(self.state[:, 5:] == 1) * 2
# correct letter not correct spot
reward += np.sum(self.state[:, 5:] == 2) * 1
# incorrect letter
reward += np.sum(self.state[:, 5:] == 3) * -1
# guess same word as before
hashable_action = tuple(action)
if hashable_action in self.info['guesses']:
reward += -10
else: # guess different word
reward += 10
self.info['guesses'].add(hashable_action)
# for game ending in win or loss
reward += 10 if correct else -10 if done else 0
self.info['correct'] = correct
# observation, reward, terminated, truncated, info
return self.state, reward, done, False, self.info