removed test stuff

This commit is contained in:
Ethan Shapiro 2024-03-14 12:55:37 -07:00
parent 7ad5b97463
commit 8d3ce990e3
4 changed files with 116 additions and 227 deletions

1
.gitignore vendored
View File

@ -1,2 +1,3 @@
**/data/* **/data/*
/env /env
**/*.zip

114
dqn_wordle.ipynb Normal file
View File

@ -0,0 +1,114 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import gym\n",
"import gym_wordle\n",
"from stable_baselines3 import DQN\n",
"import numpy as np\n",
"import tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"env = gym.make(\"Wordle-v0\")\n",
"\n",
"print(env)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"total_timesteps = 100000\n",
"model = DQN(\"MlpPolicy\", env, verbose=0)\n",
"model.learn(total_timesteps=total_timesteps, progress_bar=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def test(model):\n",
"\n",
" end_rewards = []\n",
"\n",
" for i in range(1000):\n",
" \n",
" state = env.reset()\n",
"\n",
" done = False\n",
"\n",
" while not done:\n",
"\n",
" action, _states = model.predict(state, deterministic=True)\n",
"\n",
" state, reward, done, info = env.step(action)\n",
" \n",
" end_rewards.append(reward == 0)\n",
" \n",
" return np.sum(end_rewards) / len(end_rewards)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.save(\"dqn_wordle\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = DQN.load(\"dqn_wordle\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(test(model))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long

61
test.py
View File

@ -1,61 +0,0 @@
from torch.utils.data import Dataset
from transformers import BertGenerationEncoder, BertGenerationDecoder, EncoderDecoderModel, BertTokenizer
from tqdm import tqdm as progress_bar
import torch
import matplotlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
encoder = BertGenerationEncoder.from_pretrained("google-bert/bert-base-uncased", bos_token_id=101, eos_token_id=102)
# add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token
decoder = BertGenerationDecoder.from_pretrained("google-bert/bert-base-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102)
model = EncoderDecoderModel(encoder=encoder, decoder=decoder)
# create tokenizer...
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")
import json
class CodeDataset(Dataset):
def __init__(self):
with open("data/conala-train.json") as f:
self.data = json.load(f)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
intent = self.data[idx]["rewritten_intent"] if self.data[idx]["rewritten_intent"] else self.data[idx]["intent"]
return intent, self.data[idx]["snippet"]
optimizer = torch.optim.AdamW(params=model.parameters(), lr=1e-3)
dataloader = CodeDataset()
model = model.to(device)
losses = []
epochs = 10
for i in range(epochs):
epoch_loss = 0
for idx, (question, answer) in progress_bar(enumerate(dataloader), total=len(dataloader)):
input_ids = tokenizer(question, add_special_tokens=False, return_tensors="pt").input_ids.to(device)
label_ids = tokenizer(answer, return_tensors="pt").input_ids.to(device)
loss = model(input_ids=input_ids, decoder_input_ids=label_ids, labels=label_ids).loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
losses.append(epoch_loss)
plt.plot(losses, color="green", label="Training Loss")
plt.legend(loc = 'upper left')
plt.savefig("plot.png")