mirror of
https://github.com/ltcptgeneral/cse151b-final-project.git
synced 2024-11-10 07:04:45 +00:00
copy the wordle env locally and fix the obs return
This commit is contained in:
parent
5ec123e0f1
commit
5672169073
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
|||||||
**/data/*
|
**/data/*
|
||||||
**/*.zip
|
**/*.zip
|
||||||
|
**/
|
155
dqn_wordle.ipynb
155
dqn_wordle.ipynb
@ -2,64 +2,55 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 83,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"import gym\n",
|
"import gym\n",
|
||||||
"import gym_wordle\n",
|
"import gym_wordle\n",
|
||||||
"from stable_baselines3 import DQN\n",
|
"from stable_baselines3 import DQN, PPO, common\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
"import tqdm"
|
"import tqdm"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 84,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"<Monitor<WordleEnv instance>>\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"env = gym.make(\"Wordle-v0\")\n",
|
"env = gym_wordle.wordle.WordleEnv()\n",
|
||||||
|
"env = common.monitor.Monitor(env)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"print(env)"
|
"print(env)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 35,
|
"execution_count": 85,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
"source": [
|
|
||||||
"total_timesteps = 100000\n",
|
|
||||||
"model = DQN(\"MlpPolicy\", env, verbose=0)\n",
|
|
||||||
"model.learn(total_timesteps=total_timesteps, progress_bar=True)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"name": "stdout",
|
||||||
"execution_count": null,
|
"output_type": "stream",
|
||||||
"metadata": {},
|
"text": [
|
||||||
"outputs": [],
|
"Using cuda device\n",
|
||||||
|
"Wrapping the env in a DummyVecEnv.\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"def test(model):\n",
|
"total_timesteps = 1000\n",
|
||||||
"\n",
|
"model = PPO(\"MlpPolicy\", env, verbose=1)\n",
|
||||||
" end_rewards = []\n",
|
"model.learn(total_timesteps=total_timesteps)"
|
||||||
"\n",
|
|
||||||
" for i in range(1000):\n",
|
|
||||||
" \n",
|
|
||||||
" state = env.reset()\n",
|
|
||||||
"\n",
|
|
||||||
" done = False\n",
|
|
||||||
"\n",
|
|
||||||
" while not done:\n",
|
|
||||||
"\n",
|
|
||||||
" action, _states = model.predict(state, deterministic=True)\n",
|
|
||||||
"\n",
|
|
||||||
" state, reward, done, info = env.step(action)\n",
|
|
||||||
" \n",
|
|
||||||
" end_rewards.append(reward == 0)\n",
|
|
||||||
" \n",
|
|
||||||
" return np.sum(end_rewards) / len(end_rewards)"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -77,7 +68,93 @@
|
|||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"model = DQN.load(\"dqn_wordle\")"
|
"model = PPO.load(\"dqn_wordle\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[[16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n",
|
||||||
|
"[[16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n",
|
||||||
|
"[[16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n",
|
||||||
|
"[[16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n",
|
||||||
|
"[[16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [ 0 0 0 0 0 0 0 0 0 0]] -1.0 False {}\n",
|
||||||
|
"[[16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]\n",
|
||||||
|
" [16 18 5 15 14 3 3 1 3 3]] -1.0 True {}\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"ename": "KeyError",
|
||||||
|
"evalue": "'correct'",
|
||||||
|
"output_type": "error",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"Cell \u001b[0;32mIn[82], line 19\u001b[0m\n\u001b[1;32m 15\u001b[0m state, reward, done, info \u001b[38;5;241m=\u001b[39m env\u001b[38;5;241m.\u001b[39mstep(action)\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28mprint\u001b[39m(state, reward, done, info)\n\u001b[0;32m---> 19\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[43minfo\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcorrect\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m:\n\u001b[1;32m 20\u001b[0m wins \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 22\u001b[0m \u001b[38;5;66;03m#end_rewards.append(reward == 0)\u001b[39;00m\n\u001b[1;32m 23\u001b[0m \n\u001b[1;32m 24\u001b[0m \u001b[38;5;66;03m#return np.sum(end_rewards) / len(end_rewards)\u001b[39;00m\n",
|
||||||
|
"\u001b[0;31mKeyError\u001b[0m: 'correct'"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"env = gym_wordle.wordle.WordleEnv()\n",
|
||||||
|
"\n",
|
||||||
|
"for i in range(1):\n",
|
||||||
|
" \n",
|
||||||
|
" state = env.reset()\n",
|
||||||
|
"\n",
|
||||||
|
" done = False\n",
|
||||||
|
"\n",
|
||||||
|
" wins = 0\n",
|
||||||
|
"\n",
|
||||||
|
" while not done:\n",
|
||||||
|
"\n",
|
||||||
|
" action, _states = model.predict(state, deterministic=True)\n",
|
||||||
|
"\n",
|
||||||
|
" state, reward, done, info = env.step(action)\n",
|
||||||
|
"\n",
|
||||||
|
" print(state, reward, done, info)\n",
|
||||||
|
"\n",
|
||||||
|
" if info[\"correct\"]:\n",
|
||||||
|
" wins += 1\n",
|
||||||
|
" \n",
|
||||||
|
" #end_rewards.append(reward == 0)\n",
|
||||||
|
" \n",
|
||||||
|
"#return np.sum(end_rewards) / len(end_rewards)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@ -85,9 +162,7 @@
|
|||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": []
|
||||||
"print(test(model))"
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
|
Loading…
Reference in New Issue
Block a user