mirror of
https://github.com/ltcptgeneral/cse151b-final-project.git
synced 2024-11-10 07:04:45 +00:00
65 lines
2.1 KiB
Python
65 lines
2.1 KiB
Python
|
|
||
|
from torch.utils.data import Dataset
|
||
|
from transformers import BertGenerationEncoder, BertGenerationDecoder, EncoderDecoderModel, BertTokenizer
|
||
|
from tqdm import tqdm as progress_bar
|
||
|
import torch
|
||
|
import matplotlib
|
||
|
|
||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
|
print(device)
|
||
|
|
||
|
encoder = BertGenerationEncoder.from_pretrained("google-bert/bert-large-uncased", bos_token_id=101, eos_token_id=102)
|
||
|
# add cross attention layers and use BERT's cls token as BOS token and sep token as EOS token
|
||
|
decoder = BertGenerationDecoder.from_pretrained("google-bert/bert-large-uncased", add_cross_attention=True, is_decoder=True, bos_token_id=101, eos_token_id=102)
|
||
|
model = EncoderDecoderModel(encoder=encoder, decoder=decoder)
|
||
|
|
||
|
# create tokenizer...
|
||
|
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-large-uncased")
|
||
|
|
||
|
import json
|
||
|
|
||
|
class CodeDataset(Dataset):
|
||
|
def __init__(self):
|
||
|
with open("data/conala-train.json") as f:
|
||
|
self.data = json.load(f)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.data)
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
intent = self.data[idx]["rewritten_intent"] if self.data[idx]["rewritten_intent"] else self.data[idx]["intent"]
|
||
|
return intent, self.data[idx]["snippet"]
|
||
|
|
||
|
|
||
|
optimizer = torch.optim.AdamW(params=model.parameters(), lr=1e-3)
|
||
|
dataloader = CodeDataset()
|
||
|
model = model.to(device)
|
||
|
|
||
|
losses = []
|
||
|
epochs = 10
|
||
|
for i in range(epochs):
|
||
|
|
||
|
epoch_loss = 0
|
||
|
|
||
|
for idx, (question, answer) in progress_bar(enumerate(dataloader), total=len(dataloader)):
|
||
|
|
||
|
print(question)
|
||
|
input_ids = tokenizer(question, add_special_tokens=False, return_tensors="pt").input_ids.to(device)
|
||
|
label_ids = tokenizer(answer, return_tensors="pt").input_ids.to(device)
|
||
|
|
||
|
loss = model(input_ids=input_ids, decoder_input_ids=label_ids, labels=label_ids).loss
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
epoch_loss += loss.item()
|
||
|
|
||
|
losses.append(epoch_loss)
|
||
|
|
||
|
plt.plot(losses, color="green", label="Training Loss")
|
||
|
plt.legend(loc = 'upper left')
|
||
|
plt.show()
|
||
|
|
||
|
|