fix program 3 to paritally working,

add program3_tb,
fix testbench random selection
This commit is contained in:
Arthur Lu 2022-08-20 02:50:14 +00:00
parent 2d17abe39e
commit 9254063e3e
4 changed files with 205 additions and 21 deletions

View File

@ -51,13 +51,13 @@ module program1_tb ();
// now select a starting LFSR state -- any nonzero value will do // now select a starting LFSR state -- any nonzero value will do
always_comb begin always_comb begin
LFSR_init = $random; LFSR_init = $urandom;
if(!LFSR_init) LFSR_init = 7'b1; // prevents illegal starting state = 7'b0; if(!LFSR_init) LFSR_init = 7'b1; // prevents illegal starting state = 7'b0;
end end
// set preamble length for the program run (always > 9 but < 26) // set preamble length for the program run (always > 9 but < 26)
always_comb begin always_comb begin
pre_length = $random; pre_length = $urandom;
if(pre_length < 10) pre_length = 10; // prevents pre_length < 10 if(pre_length < 10) pre_length = 10; // prevents pre_length < 10
else if(pre_length > 26) pre_length = 26; // prevets pre_length > 26 else if(pre_length > 26) pre_length = 26; // prevets pre_length > 26
end end

View File

@ -56,7 +56,7 @@ module program2_tb () ;
// set preamble lengths for the four program runs (always > 9 but < 16) // set preamble lengths for the four program runs (always > 9 but < 16)
always_comb begin always_comb begin
pre_length = 10;//$random>>10 ; // program 1 run pre_length = $urandom;//$random>>10 ; // program 1 run
if(pre_length < 10) pre_length = 10; // prevents pre_length < 10 if(pre_length < 10) pre_length = 10; // prevents pre_length < 10
else if(pre_length > 26) pre_length = 26; else if(pre_length > 26) pre_length = 26;
end end

170
RTL/program3_tb.sv Normal file
View File

@ -0,0 +1,170 @@
// program3_tb
// testbench for programmable message decryption, space removal (Program #3)
// CSE141L
// runs program 2 (decrypt a message), but with corruption
module program3_tb () ;
logic clk = 1'b0 , // advances simulation step-by-step
init = 1'b1 , // init (reset) command to DUT
start = 1'b1 ; // req (start program) command to DUT
wire done ; // done flag returned by DUT
logic[3:0] pre_length ; // space char. bytes before first char. in message
logic[7:0] message1[49] , // original raw message, in binary
msg_padded1[80], // original message, plus pre- and post-padding w/ ASCII spaces
msg_crypto1[64]; // encrypted message according to the DUT
logic[6:0] lfsr_ptrn , // chosen one of 9 maximal length 7-tap shift reg. ptrns
LFSR_ptrn[9] , // the 9 candidate maximal-length 7-bit LFSR tap ptrns
lfsr1[64] , // states of program 1 encrypting LFSR
LFSR_init ; // one of 127 possible NONZERO starting states
int score ; // count of correct encyrpted characters
// our original American Standard Code for Information Interchange message follows
// note in practice your design should be able to handle ANY ASCII string that is
// restricted to characters between space (0x20) and script f (0x9f) and shorter than
// 53 characters in length
string str1 = " four score and seven years ago..."; // sample program 1 input
// string str1 = " Knowledge comes, but wisdom lingers. "; // alternative inputs
// string str1 = " 01234546789abcdefghijklmnopqrstuvwxyz. "; // (make up your own,
// string str1 = " f A joke is a very serious thing."; // as well)
// string str1 = " Ajok "; //
// string str1 = " Knowledge comes, but wisdom lingers. "; //
// displayed encrypted string will go here:
string str_enc1[64]; // program 1 desired output will go here
int strlen; // incoming string length
int pt_no; // select LFSR pattern, value 0 through 8
int file_no; // write to file
int space; // counts leading space characters in message
logic[5:0] flipper; // corruptor -- bit flip
logic[79:0] flipped = 80'b0; // tracks which word got a bit flipped
// the 8 possible maximal-length feedback tap patterns from which to choose
assign LFSR_ptrn[0] = 7'h60; // 110_0000
assign LFSR_ptrn[1] = 7'h48;
assign LFSR_ptrn[2] = 7'h78;
assign LFSR_ptrn[3] = 7'h72;
assign LFSR_ptrn[4] = 7'h6A;
assign LFSR_ptrn[5] = 7'h69;
assign LFSR_ptrn[6] = 7'h5C;
assign LFSR_ptrn[7] = 7'h7E;
assign LFSR_ptrn[8] = 7'h7B;
always_comb begin
pt_no = $urandom_range(0, 8);
if(pt_no>8) pt_no[3] = 0; // restrict pt_no to 0 through 8
lfsr_ptrn = LFSR_ptrn[pt_no]; // look up and engage the selected pattern; to data_mem[62]
end
// now select a starting LFSR state -- any nonzero value will do
always_comb begin
LFSR_init = $urandom;
if(!LFSR_init) LFSR_init = 7'b1; // prevents illegal starting state = 7'b0;
end
// set preamble length for the program run (always > 9 but < 26)
always_comb begin
pre_length = $urandom;
if(pre_length < 10) pre_length = 10; // prevents pre_length < 10
else if(pre_length > 26) pre_length = 26; // prevets pre_length > 26
end
// ***** instantiate your own top level design here *****
top_level dut(
.clk (clk ), // input: use your own port names, if different
.init (init ), // input: some prefer to call this ".reset"
.req (start), // input: launch program
.ack (done ) // output: "program run complete"
);
initial begin
//***** pre-load your instruction ROM here or inside itself *****
// $readmemb("encoder.bin", dut.instr_rom.rom);
// you may also pre-load desired constants, etc. into
// your data_mem here -- the upper addresses are reserved for your use
// dut.data_mem.DM[128]=8'hfe; //whatever constants you want
file_no = 'b1; // create your output file
#0ns strlen = str1.len; // length of string 1 (# characters between " ")
if(strlen>52) strlen = 52; // clip message at 52 characters
for(space=0;space<24;space++) // count leading spaces in message
if(str1[space]==8'h20) continue;
else break;
// program 1 -- precompute encrypted message
lfsr1[0] = LFSR_init; // any nonzero value (zero may be helpful for debug)
$fdisplay(file_no,"run encryption program; original message = ");
$fdisplay(file_no,"%s",str1); // print original message in transcript window
$fdisplay(file_no,"LFSR_ptrn = 0x%h, LFSR_init = 0x%h, pre_length: %d",lfsr_ptrn,LFSR_init,pre_length);
for(int j=0; j<80; j++) // pre-fill message_padded with ASCII space characters
msg_padded1[j] = 8'h20; //
for(int l=0; l<strlen; l++) // overwrite up to 49 of these spaces w/ message itself
msg_padded1[l+pre_length] = str1[l];
// compute the LFSR sequence
for (int ii=0;ii<63;ii++)
lfsr1[ii+1] = {(lfsr1[ii][5:0]),(^(lfsr1[ii]&lfsr_ptrn))};
// encrypt the message charater-by-character, then prepend the parity
// testbench will change on falling clocks to avoid race conditions at rising clocks
for (int i=0; i<64; i++) begin
msg_crypto1[i] = (msg_padded1[i] ^ lfsr1[i]);
msg_crypto1[i][7] = ^msg_crypto1[i][6:0]; // prepend parity bit into MSB
$fdisplay(file_no,"i=%d, msg_pad=0x%h, lfsr=%b msg_crypt w/ parity = 0x%h",
i,msg_padded1[i],lfsr1[i],msg_crypto1[i]);
str_enc1[i] = string'(msg_crypto1[i][6:0]);
end
$fdisplay(file_no,"encrypted string = ");
for(int jj=0; jj<64; jj++)
$fwrite(file_no,"%s",str_enc1[jj]);
$fdisplay(file_no,"\n");
// run encryption program first to know what to decrypt
// ***** load operands into your data memory *****
// ***** use your instance name for data memory and its internal core *****
// for(int m=0; m<61; m++)
// dut.DM.core[m] = 8'h20; // pad memory w/ ASCII space characters
// for(int m=0; m<strlen; m++)
// dut.DM.core[m] = str1[m]; // overwrite/copy original string into device's data memory[0:strlen-1]
// dut.DM.core[61] = pre_length; // number of bytes preceding message
// dut.DM.core[62] = lfsr_ptrn; // LFSR feedback tap positions (9 possible ptrns)
// dut.DM.core[63] = LFSR_init; // LFSR starting state (nonzero)
for(int m=0; m<24; m++) // load first 24 characters of encrypted message into data memory
dut.DM.core[m+64] = msg_crypto1[m];
for(int n=24; n<64; n++) begin // load subsequent, possibly corrupt, encrypted message into data memory
// set flipper = 8 or higher to disable bit corruption
flipper = 8;//$random; // value between 0 and 63, inclusive
dut.DM.core[n+64] = msg_crypto1[n]^(1<<flipper);
if(flipper<8) flipped[n]=1;
end
#20ns init = 1'b0; // suggestion: reset = 1 forces your program counter to 0
#10ns start = 1'b0; // request/start = 1 holds your program counter
#60ns; // wait for 6 clock cycles of nominal 10ns each
wait(done); // wait for DUT's ack/done flag to go high
#10ns $fdisplay(file_no,"");
$fdisplay(file_no,"program 3:");
// ***** reads your results and compares to test bench
// ***** use your instance name for data memory and its internal core *****
for(int n=0; n<64; n++) begin
if(flipped[n+pre_length+space]) begin
if(dut.DM.core[n][7]) begin
$fdisplay(file_no, "error successfully flagged");
score++;
end else begin
$fdisplay(file_no, "failed to flag error");
end
end
else if({flipped[n+pre_length+space],msg_padded1[n+pre_length+space][6:0]}
== dut.DM.core[n]) begin
$fdisplay(file_no,"%d bench msg: %s %h dut msg: %h",
n, msg_padded1[n+pre_length+space][6:0], msg_padded1[n+pre_length+space], dut.DM.core[n]);
score++;
end
else
$fdisplay(file_no,"%d bench msg: %s %h dut msg: %h OOPS!",
n, msg_padded1[n+pre_length+space][6:0], msg_padded1[n+pre_length+space], dut.DM.core[n]);
end
$fdisplay(file_no,"score = %d/64",score);
#20ns $fclose(file_no);
#20ns $stop;
end
always begin // continuous loop
#5ns clk = 1; // clock tick
#5ns clk = 0; // clock tock
end
endmodule

View File

@ -1,5 +1,5 @@
// Program 2 register use map: // Program 2 register use map:
// r0 is the accumulator, r1 is often used to cache temp values // r0 is the accumulator, r1 r2 r3 are often used to cache temp values
// r5 is the TAP LUT link register // r5 is the TAP LUT link register
// r6 is LFSR tap pattern // r6 is LFSR tap pattern
// r7 is LFSR state value // r7 is LFSR state value
@ -51,11 +51,9 @@ tap_init: LDI #d64
LDW r11 // get the first preamble character LDW r11 // get the first preamble character
PUT r1 // put cipher text into r1 PUT r1 // put cipher text into r1
LDI #d32 // load expected space character LDI #d32 // load expected space character
STW r12 // write initial space into memory
XOR r1 // get the initial state XOR r1 // get the initial state
PUT r7 // put initial state guess into r7 PUT r7 // put initial state guess into r7
NXT r11 // increment read pointer NXT r11 // increment read pointer
NXT r12 // increment write pointer
NXT r9 // decrement total encryption chars remaining NXT r9 // decrement total encryption chars remaining
tap_loop: LDI lfsr_routine tap_loop: LDI lfsr_routine
JAL r0 // jump to lfsr routine which calculates next state in r7 JAL r0 // jump to lfsr routine which calculates next state in r7
@ -69,38 +67,54 @@ tap_init: LDI #d64
CLB r0 // clear leading bit for r0 since we do not expect any errors for this program CLB r0 // clear leading bit for r0 since we do not expect any errors for this program
SUB r1 // subtract actual from expected, result of 0 means matching SUB r1 // subtract actual from expected, result of 0 means matching
JNZ r2 // jump to outer loop (picks new tap pattern) if the actual cipher was not equal to the expected JNZ r2 // jump to outer loop (picks new tap pattern) if the actual cipher was not equal to the expected
LDI #d32 // load preamble char
STW r12 // store preamble char in memory
NXT r11 // increment read pointer NXT r11 // increment read pointer
NXT r12 // increment write pointer
NXT r9 // decrement total encryption chars remaining NXT r9 // decrement total encryption chars remaining
LDI main_loop // load main_loop location into r0 LDI finish_preamble // load main_loop location into r0
NXT r8 // decrement preamble counter NXT r8 // decrement preamble counter
JEZ r0 // if r8 (preamble counter) is zero, then all preamble have matched and current tap pattern is correct, jump to main loop JEZ r0 // if r8 (preamble counter) is zero, then all preamble have matched and current tap pattern is correct, jump to main loop
LDI tap_loop LDI tap_loop
JMP r0 // jump to tap_loop if characters matched but preamble is not over JMP r0 // jump to tap_loop if characters matched but preamble is not over
finish_preamble: LDI lfsr_routine
JAL r0 // jump to lfsr routine which calculates next state in r7
LDW r11 // get next ciphertext
NXT r11 // increment read
NXT r9 // decrement remaining plaintext characters
PUT r3 // store clean copy of ciphertext for later use
XOR r7 // bitwise XOR the current state with ciphertext space to generate plaintext
CLB r0 // clear the leading bit of the plaintext as in requirements
PUT r1 // put the plaintext in r1
LDI finish_preamble
PUT r2 // load address of finish_preamble loop into r2
LDI #d32 // get value of space
SUB r1 // compare if r1 == 32
JEZ r2 // jump to finish preamble loop if this plaintext == space(32)
CLB r1 // clear leading bit of plaintext
GET r1 // get r1 to r0
STW r12 // store plaintext
NXT r12 // increment write only if we found the first non preamble char
main_loop: LDI lfsr_routine // load address for the lfsr_routine label main_loop: LDI lfsr_routine // load address for the lfsr_routine label
JAL r0 // jump to the lfsr_routine label JAL r0 // jump to the lfsr_routine label
LDI correct
PUT r1 // put correct handle address in r1
LDW r11 // load the next ciphertext byte LDW r11 // load the next ciphertext byte
CHK r0 // check ciphertext for error
JEZ r1 // if no error goto correct handler, otherwise continue to error handler
error: LDI #x80 // load error flag character into r0
STW r12 // store error flag to write pointer
LDI common
JMP r0 // jump out of error handling, to common operations after writing
correct: CLB r0 // clear leading bit because we do not expect errors
XOR r7 // bitwise XOR the current state with ciphertext space to generate plaintext XOR r7 // bitwise XOR the current state with ciphertext space to generate plaintext
CLB r0 // clear the leading bit of the plaintext as in requirements CLB r0 // clear the leading bit of the plaintext as in requirements
STW r12 // store plaintext to write pointer STW r12 // store plaintext to write pointer
common: NXT r11 // increment read pointer NXT r11 // increment read pointer
NXT r12 // increment write pointer NXT r12 // increment write pointer
LDI done // load address of label done LDI finish_post // load address of label done
NXT r9 // decrement number of remaining plaintext chars NXT r9 // decrement number of remaining plaintext chars
JEZ r0 // jump to end of program if all plaintext chars have been processed JEZ r0 // jump to end of program if all plaintext chars have been processed
LDI main_loop // load address of main_loop LDI main_loop // load address of main_loop
JMP r0 // jump to main_loop if there is still space for message characters JMP r0 // jump to main_loop if there is still space for message characters
finish_post: LDI #d32
STW r12 // store extra spaces at the end to pad message
LDI done
PUT r1 // store done address in r1
LDI #d63
SUB r12 // subtract r12 from 63 to see if they are equal
JEZ r1 // if write pointer == 63, then we are done
NXT r12 // increment write pointer
LDI finish_post
JMP r0 // otherwise keep on padding spaces to the end
lfsr_routine: GET r7 // get previous state lfsr_routine: GET r7 // get previous state
AND r6 // and state with taps to get feedback pattern AND r6 // and state with taps to get feedback pattern
PTY r0 // get feedback parity bit PTY r0 // get feedback parity bit