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ABSTRACT

Microservices are a popular architecture due to their logical
separation of concerns among multiple teams of develop-
ers. However, performance and scalability remain ongoing
challenges with significant research focus. One approach to
improving performance and scalability is caching. In this
paper, we explore advanced caching strategies and evalu-
ate their effectiveness in accessing data within microser-
vices. We test different eviction policies, cache topologies,
and data prefetching techniques on common access patterns.
Our results show that these strategies perform well on select
patterns, highlighting their potential to outperform state-of-
the-art solutions such as MuCache. We hope that advanced
strategies can serve as a drop-in upgrade for existing mi-
croservice caches.

1 INTRODUCTION

Problem statement.

With the rise of large and complex cloud services and
applications, microservice architectures have become very
prevalent. While microservice architectures bring more or-
ganization and isolation to workflows and services, they
introduce problems such as increased latency, network man-
agement, and scalability. Thus, many researchers in this area
of research seek methods of optimizing and improving the
performance of microservices.

One such area of research is in managing and optimizing
communication between microservices. API calls allow ser-
vices to efficiently and quickly transfer data and information
to each other. However, with so many intercommunicating
services, there can be network congestion and overloaded
nodes that degrade performance significantly. Thus, one way
of alleviating this is through caching API calls, where mi-
croservices store previously retrieved values to reduce the
number of redundant API calls.

Although caching is utilized in many microservice archi-
tectures, many of these caches are simple, relying only on
basic key-value retrieval, update, and invalidation. It is pos-
sible that proprietary microservices utilize state-of-the-art
API call caching, but publicly available information on their
caching strategies is hard to find. Additionally, most mi-
croservice caching papers are application-based, focused on

regional/large-scale caching, or compare very few caching
strategies together.

State of the art.

The state-of-the-art for microservice API caching is Mu-
Cache, which proposes a system framework that automati-
cally provides microservice applications with inter-service
caches that improve performance [8]. The paper indicates
that their framework results in lower latency, lower resource
usage, and faster invalidation. However, the caching strate-
gies utilized are simple, with MuCache using a simple key-
value cache layout, LRU eviction policy, and no prefetching.
In addition, the authors do not delve into the impact of dif-
ferent caching strategies.

Both Azure and AWS documentation also discuss caching
for microservices [4] [3]. Similar to MuCache, the caching
strategies that are discussed are simple key-value stores us-
ing Redis or Memcached. They also do not feature different
architectures or prefetching and only discuss simple time-
based eviction policies.

Key challenges.

One key challenge in researching microservice caching is
determining how to create a realistic testing environment for
each caching strategy. Microservices can be large-scale and
diverse, making it difficult to simulate the complex interplay
between services that arise in these deployments. It is also
important to test various cache strategies without potentially
introducing too many additional variables to account for.

Another challenge is how to set up testing and evaluation
metrics to accurately compare and contrast different caching
strategies. Each strategy has its pros and cons as well as an
optimal environment to operate within. We choose a range of
measurements which best represent a cache’s performance
and compare advanced cache strategies against the state-of-
the-art.

Key insights/solutions.

Our goal is to analyze the impact and effectiveness of
various caching strategies for API calls within microservice
architectures. By comparing different caching techniques
and eviction policies, the results inform developers with ac-
tionable insights to optimize caching decisions and select
the most suitable eviction strategies based on empirical eval-
uation.



When determining which caching strategies to analyze,
we focus on promising strategies that are expected to reduce
latency in microservice systems. We selected four strate-
gies relating to eviction strategies, multi-tiered caching, and
prefetching. These strategies have promising results in other

applications/systems, making them good candidates for caching

API calls.

Evaluation.

To evaluate each caching strategy, each cache strategy is
tested on different workloads in a mock social media envi-
ronment. This is not a complete microservice environment
but is a small fragment of two services that might be in a mi-
croservice application environment. We assume that caching
strategies between two services can transfer to other service
pairs as well. This approach can save resources and quickly
test our caching strategies.

As mentioned, a difficult task is to decide on the metrics
to compare the performance of each caching strategy. Each
strategy performs better in some metrics than others. In
this project, we measure the performance of our strategies
via hit ratio, average response time, average cache hit/miss
response time, cache throughput, and real throughput.

Contributions.

With this paper, we conducted a synthetic analysis on the
impact and effectiveness of various caching strategies for
API calls within microservice architectures. We discovered
caching strategies that work well in certain workloads in
a microservice environment. We encourage more research
into the impact of caching strategies within microservices.

2 OVERVIEW

As mentioned, simulating an entire microservice environ-
ment is costly and hard to analyze. Thus, we assume that
if a caching strategy improves the performance of the API
calls between two individual microservices, this performance
boost should reflect on the entire environment. This has been
demonstrated in recent research such as MuCache [8]. We
can make this assumption because API calls are dependent
only on the two services. For example, if a specific strategy
is effective for a high read workload between two nodes,
then it should also apply to other node pairs with high read
workloads. In a realistic environment, this assumption is
challenged by the fact that microservices are dynamic and
complex, which does not guarantee a static workload distri-
bution between nodes. However, this dynamic nature can be
simulated and can give us accurate insights into how these
caching strategies might perform in a real environment. The
testing environment is small simulation that mimics the
communication between two microservice nodes. With this
testing environment, each cache strategy can be tested effec-
tively on different workload patterns.
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Although caching has been utilized in many microser-
vices, there are still improvements that can be made even to
the state-of-the-art microservices. For example, when Meta
characterizes the workload of their caching system, Mem-
Cache, they discuss the distribution of cache misses in their
systems [5]. From their findings, they found that a majority
of their cache misses are eviction and compulsory misses.
In fact, for some pools in Meta, 99% of the cache misses are
compulsory misses. This highlights a need to improve cache
eviction policies and prefetching within microservices. For
our caching strategies, we decided to focus on prefetching,
tiered caching, and sieve, which can help reduce these types
of cache misses.

3 METHODOLOGY

We implemented a simple abstract class for the cache, pro-
viding the basic functions shown in figure 1. We use this
abstraction to quickly implement different caches and test
them in the simulated environment without any concern. We
then implement each of our cache strategies and a baseline
cache on top of the abstract class. We selected the following
caching strategies: sieve, speculative prefetching, tiered
caching, and read-after-write prefetching. We implement
three baseline comparisons to evaluate our strategies: a no-
cache baseline, a state-of-the-art cache utilizing LRU evic-
tion without prefetching, and an ideal cache. The ideal cache
serves as a hypothetical upper bound on caching perfor-
mance. Each caching strategy is different and has unique
designs to improve its performance and hit rate.

get(key) -> return item value given key or None
put(key, value) -> insert item to cache
invalidate(key) -> mark item with key as invalid

Figure 1: Cache Abstract Class Methods

Baselines

Our baseline cache model is a straightforward key-value
cache that uses the least recently used (LRU) eviction strategy.
This method is widely used, including in MuCache, and is
known to work well. To better understand how our caching
strategies compare, we also introduce two extreme cases:
ideal caching and no caching. In an ideal cache, every re-
quest results in a hit, while in a no-cache scenario, every
request is a miss. These two extremes help set the perfor-
mance boundaries, giving us a clear reference point when
evaluating our caching strategies.

SIEVE

SIEVE is a simple but efficient cache eviction algorithm
that improves cache management by using a single queue
along with a "hand" pointer for evictions [6]. It remembers
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if an object has been accessed using a single "visited" bit.
Mostly used items remain in the cache, while the least used
items are evicted when the hand traverses from the tail to the
head of the queue. This design reduces the computational
overhead and increases the throughput.

In an Instagram-like high-read workload environment,
user profile data, follower lists, and activity feeds generate
many APIrequests. Traditional caching methods may impose
excessive complexity and computational overhead. SIEVE’s
minimalist design and low-overhead eviction policy allow
for more efficient use of the cache with frequent access user
data still being easily accessible and preventing redundant
unnecessary API calls.

By using SIEVE caching in the Instagram user model,
we expect reduced cache miss ratios, less API latency, and

quicker response times. SIEVE’s performance and low-overhead

architecture can scale better, allowing Instagram to handle
large-scale user interactions more effectively. Furthermore,
unlike traditional LRU-based caches, SIEVE reduces costly
cache promotions, which optimizes further for performance.
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Figure 2: Sieve Eviction Algorithm

Speculative Prefetching

Prefetching represents caching strategies that utilize the
data context to improve caching based on locality. When
data is fetched and put in the cache, other data that is likely
to be accessed next is preemptively fetched into the cache.

In our implementation, when a user profile is fetched
from the database, several random friends of that user are
also fetched in anticipation of the possibility of them being
accessed shortly after. For evaluation, the number of friends’
profiles that are fetched is 10% of the cache size, as we use
the number of items instead of size in bytes as the cache size
limit. This number can be adjusted by the user, but we found
that 10% worked well for our particular environment.

LRU is used as the eviction policy. If the cache is full,
prefetching is still performed and items will be evicted to ac-
commodate the prefetched items. There are no other special
invalidation methods implemented. This type of contextual-
locality caching can be done for other systems using devel-
oper knowledge, and can either be hard-coded in or learned
using some machine learning techniques.

GET request

L.

Serves request
Controller

Choose a fix number of
random friends and fetch
their profiles if they are not in
cache

Checks cache to see
if the entry exists

Fetches enfry from DB if
necessary

Figure 3: Speculative Prefetch Workflow

Tiered Cache

We extend the baseline model with multiple-tier caching.
Tiered caching uses multiple layered tiers of caches to ef-
fectively create a large cache structure with short response
times. Each descending layer features more cache space but
higher cache latency. Our implementation uses a 2 tier cache
design using memory and disk. Like the baseline, the L1
cache stores entries in a memory hash table. Then, we also
add an in-memory lookup table for the L2 cache which stores
entries on the file system. We use LRU for eviction on both
tiers and did not add any special invalidation or prefetching
strategies. We reduced the L1 cache size by half compared
to other strategies to allocate space for the L2 lookup table.

Driver

L1: Memory

25 ltem Size L2 Cache LUT

L2 Disk
175 ltem Size

Figure 4: Tiered Cache Architecture



Read-After-Write

Read-After-Write makes the assumption that when we
write data, that new data may be read soon after. The basic
strategy is to update the data in the cache as well when con-
ducting write operations. This way, the data can be quickly
accessed when it’s being read after being written. While this
general strategy is applicable to any arbitrary application,
our implementation is not as robust due to the simple de-
sign of our API simulation and cache. When the baseline
cache receives a write request, the existing old data would
be invalidated and removed from the cache. When the Read-
After-Write intercepts a write request, it instead fetches the
user data and replaces the invalid data as seen in Figure 5.
While this method is roundabout, we believe that the perfor-
mance difference from the actual method is negligible and
still demonstrates its effectiveness.

Even though the strategy is simple, it requires the devel-
oper to have some knowledge/context about the workloads
between two nodes to satisfy the assumption mentioned be-
fore. Some workloads might be dynamic or hard to analyze,
making this strategy difficult to apply for every situation. In
addition, we are only testing with single data write requests.
If we write multiple data, there will be a latency/computation
penalty that scales as we interact with more data. This could
impact the effectiveness of the strategy, but will not be ad-
dressed for this project. However, this can be studied in
future research.

POST
Request

Update Value

GET Request in Cache

Read new
data from
DB

Write new
data to DB

Figure 5: Read-After-Write Implementation Workflow

4 EVALUATION

We evaluate our caching strategies within a simulated mi-
croservice environment, measuring their performance under
different workloads. Our evaluation is structured to answer
the following key questions:

e How do different caching strategies impact perfor-
mance in microservice environments?

e Under what conditions does each caching strategy
provide the best benefits?

e What are the trade-offs between caching techniques
in terms of latency, throughput, and cache efficiency?
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To answer these questions, we describe our testing infras-
tructure, evaluation methodology, benchmarks, workloads,
and results.

4.1 Testing Infrastructure

To analyze and compare our strategies, we designed a sim-
ulated microservice environment. Instead of deploying a
full-scale distributed system, we assume that caching per-
formance observed in API calls between two microservice
nodes can generalize to other microservice pairs. This al-
lows us to conduct controlled and repeatable experiments
efficiently.

Microservice Simulation

We built a small-scale mock social media platform where
users have friends, followers, and posts. The platform is com-
posed of two nodes, and a TinyDB database, a lightweight
NoSQL database, that stores user profiles. To simulate the
interaction between two nodes, we utilized FastAPI, which al-
lows us to run a local server to send GET and PULL requests.
Our FastAPI-based microservice sends GET and POST re-
quests to retrieve or update user profiles, while another node
interacts directly with the database to serve the requests.
This mimics the read-and-write API calls between microser-
vice nodes. The caching layer is implemented between the
API endpoints and the underlying database. Data is stored
in TinyDB, a lightweight NoSQL database.

Data Generation

For our experiment, we populated our database with dummy
user profiles. Each user profile consists of a user ID, a name
consisting of first and last names, a follower count that is
just a random integer, a short sentence (around 10 words) bio
and post, and a list of 1 to 50 user IDs representing friends.
Each profile is around 500 bytes.

These profiles are generated using DeepSeek R1 with the
Huggingface endpoint. For reference, the model was set for
text generation, with a temperature of 1.0, top k of 60, and
top p of 0.9 to control the randomness of the output. The max
token count is set to 150. The model is invoked to generate
one profile at a time, with the output filtered using regular
expression. If the output is syntactically correct, it is put in
the database. 1002 profiles are generated this way

We acknowledge that this dummy dataset is far from per-
fect. There are patterns with real user profiles, like having
similar friends if they belong to the same friend group or hav-
ing patterns in their posts and bios. However, with the lim-
ited time we had, we were unable to located a good dummy
dataset that could be converted to serve our framework. With
the use of LLM, we were able to generate enough random
data quickly with enough randomness to simulate real-world
data.
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Figure 6: System Architecture

Artificial Network Latency

Since both FastAPI and TinyDB run in memory on the
same machine, we implemented an artificial 10 ms delay be-
tween them. This reflects the roughly 10-12 ms observed tail
latencies from research in characterizing microservice per-
formance [1]. By adding 10 ms, the total end-to-end latency
more closely reflects real world deployments.

Hardware Setup

All experiments were conducted on Ubuntu Server 24.04
LXC container on a Ryzen 3600X machine with added net-
work delays for database communication.

4.2 Evaluation Metrics

Each caching strategy optimizes different performance met-
rics. There are also many ways to measure cache perfor-
mance and we choose the below metrics based on research
[2]. Thus, we measure the following metrics:

e Hit Ratio: Fraction of requests served by the cache
instead of the database. Higher hit ratios indicate
better caching performance.

e Average Response Time: End-to-end latency, in-
cluding both cache hits and misses.

e Cache Hit Latency: Time taken to retrieve a cached
item (lower is better).

e Cache Miss Latency: Time taken when a cache miss
occurs, including the database fetch.

e Cache Throughput: Requests per second served by
the cache.

e Real Throughput: Total requests per second pro-
cessed by the system.

4.3 Workloads and Benchmarks

We test our caching strategies across a variety of realistic
workloads, inspired by common access patterns in social
media and networked applications.

Simulated Workloads We evaluate each caching strat-
egy on 10,000 requests per workload, each simulating API
requests between microservices. Since there can be many
patterns of requests, we model 3 read heavy workloads and
2 write heavy workloads, which are common patterns in
microservice applications [7]. We also add include patterns
which reflect data associativity by leveraging user associa-
tions.

¢ Random Read-Only (100% Reads): Emulates an-
alytics or web crawling where reads are purely ran-
dom.

e Read-Heavy (80% Reads, 20% Writes): Simulates
a microservice handling frequent profile views with
occasional updates.

e Write-Heavy (80% Writes, 20% Reads): Represents
applications with frequent updates (e.g., status changes).

e Frequent Users (Top 10 Users Accessed 70% of
Time): Models scenarios where a subset of users (e.g.,
influencers) receive disproportionate traffic.

e Frequent After Write (R after W): A user who
just updated their profile or posted content is highly
likely to be accessed soon.

o Friend-Based Access (Friend Read-Only): Users
access a profile and then, with a high probability,
access the user’s friend’s profile.

Friend Read-Only Variations. For friend-based access,
we experiment with different probabilities of accessing a



friend after a user profile lookup. We test 25%, 50%, and 75%
probabilities.

4.4 Results and Analysis

We analyze the experimental results from our evaluation
across different caching strategies. The raw results are in-
cluded in
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Figure 7: Cache Miss Ratio Across Workloads

Across read heavy workloads, Tiered cache and Specula-
tive Prefetching performed well with the lowest miss rate.
Note that the ideal cache is not shown because its hit rate is
always 0. Sieve performed about as well as the baseline in
all tests. On write heavy workloads, Speculative Prefetching
and Read-After-Write performed well on the friends based
associative workload and read after write workload, respec-
tively.
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Figure 8: Throughput Comparison Across Caching
Strategies
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The throughput mostly reflected the miss rate of each
cache and shows that Tiered and Speculative Prefetching
performed well on most read heavy tasks. Read-After-Write
also had high throughput on the read after write test. How-
ever, SIEVE perfomed significantly worse than the baseline.
Also note that each strategy is still far from the ideal cache
throughput, indicating more room for improvement. Finally,
write-heavy workloads showed lower throughput, indicating
that traditional caches struggle may frequent updates.

Cache Miss Latency.
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Figure 9: Cache Miss Latency Across Strategies

This test shows the cache’s latency overhead on a cache
miss. Ideally, there would be minimal overhead. Most strate-
gies had similar average cache miss latency compared to
the baseline, which is expected. However, SIEVE had signifi-
cantly more latency on cache misses, which explains its poor
throughput performance. We discuss reasons for this in 4.6.
Ideal cache has no miss latency.

Cache Hit Latency.
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Figure 10: Cache Hit Latency Across Strategies

This test measures the cache’s latency on a cache hit. The
results show that most caches were able to respond in a few
microseconds, which reflects the latency of system memory.
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However, the Tiered cache had significantly higher latency,
which is likely due to retrieving cache items from the file
system. The ideal cache had the highest latency of several
milliseconds simply because the database was used as the
cache, and this is reflected in the latency. No cache does not
have hit latency.
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Figure 11: Cache Performance Across Strategies

We again show the throughput for each cache on each
workload. The heatmap shows which caches are best suited
for each workload. Tiered cache performed well across many
workloads, and both prefetching caches performed well on
their respective workloads. In general, caches perform best
under workloads with strong locality patterns, and did not
perform well without power-law assumptions.

4.5 Insights for Developers

Based on these results, we provide the following insights for
microservice developers:

e For Read-Heavy Workloads: Speculative Prefetch-
ing and Tiered Caching are the best choices.

e For Write-Heavy Workloads: None of the tested
caches performed well. More research is needed into
write-optimized caches.

e For Social Media and API Calls: Read-After-Write
Caching and Prefetching perform the best.

o For Large-Scale Applications: Tiered Caching ef-
fectively balances storage size and latency.

e For Friend-Based or Power-Law Workloads: Prefetch-

ing and Read-After-Write outperform traditional LRU
caches.

o Utilizing extra disk space could be a useful approach
to increasing cache performance. If a microservice
instance has access to some extra unused disk space
which is low latency, developers should utilize this.

This result also highlights a possible justification for
cloud providers to include or sell some disk space for
this use as well. If storage cost is less than memory
cost, cloud providers may save money if microservice
caches switch to a multi-tiered model which lever-
ages memory and disk together.

4.6 Limitations and Future Work

e Simulation vs. Real Deployments: Our experi-
ments were conducted in a controlled simulated en-
vironment. Future work should test these caching
strategies in real-world microservice deployments
such as DeathStarBench. Additionally, future work
can modify the MuCache architecture directly and
test improvements on its caching strategy.

e Tiered Caching I/O Considerations: In our exper-
iments, the multi-tiered cache performed well due
to its balance of response time and cache size. They
showed that an increase to cache size at the cost of
latency can still result in improved throughput and
average end-to-end latency. However, this is only
the case if both the L1 and L2 caches have signifi-
cantly lower latency than the network. As a result,
our results may not reflect real microservice deploy-
ments where disk space may often be on a network
attached storage. It remains to be seen whether this
type of cache will still perform well, although it seems
unlikely since the network latency would not be by-
passed even on a cache hit.

e Impact of Workload Distribution: Our study sug-
gests that power-law workloads (e.g., Frequent Users)
are fundamental for effective caching. More research
is needed into realistic microservice access patterns.
Future experiments could experiment with traces ob-
tained from real-world APIs (e.g., Twitter API).

e Dynamic Cache Strategy Switching: In real mi-
croservice environments, workloads are sporadic and
dynamic, making these static strategies suboptimal.
Future research can study dynamic caches that change
policies based on analysis of a given workload.

5 CONCLUSION

Our analysis of caching strategies in microservices provides
a foundation for future research and practical caching guide-
lines for developers. We show the impact of caching strate-
gies on various microservice workloads. By understand-
ing the trade-offs between eviction, prefetching, and tiered
caching, developers can design optimized, workload-specific
caching strategies for their applications. We show that each
strategy works well for certain workloads, with prefetching
and multi-tiered cache performing the best all-round. There



is also room to improve on our results, especially with im-
proving our testing methodology. Future experiments should
attempt to utilize existing benchmarks and explore more
microservice-centric caching strategies to further analyze
the impact of caching strategies in microservice environ-
ments. Ultimately, we hope this project can inspire future
research in this area.
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