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ABSTRACT
Microservices are a popular architecture due to their logical

separation of concerns among multiple teams of develop-

ers. However, performance and scalability remain ongoing

challenges with significant research focus. One approach to

improving performance and scalability is caching. In this

paper, we explore advanced caching strategies and evalu-

ate their effectiveness in accessing data within microser-

vices. We test different eviction policies, cache topologies,

and data prefetching techniques on common access patterns.

Our results show that these strategies perform well on select

patterns, highlighting their potential to outperform state-of-

the-art solutions such as MuCache. We hope that advanced

strategies can serve as a drop-in upgrade for existing mi-

croservice caches.

1 INTRODUCTION

Problem statement.
With the rise of large and complex cloud services and

applications, microservice architectures have become very

prevalent. While microservice architectures bring more or-

ganization and isolation to workflows and services, they

introduce problems such as increased latency, network man-

agement, and scalability. Thus, many researchers in this area

of research seek methods of optimizing and improving the

performance of microservices.

One such area of research is in managing and optimizing

communication between microservices. API calls allow ser-

vices to efficiently and quickly transfer data and information

to each other. However, with so many intercommunicating

services, there can be network congestion and overloaded

nodes that degrade performance significantly. Thus, one way

of alleviating this is through caching API calls, where mi-

croservices store previously retrieved values to reduce the

number of redundant API calls.

Although caching is utilized in many microservice archi-

tectures, many of these caches are simple, relying only on

basic key-value retrieval, update, and invalidation. It is pos-

sible that proprietary microservices utilize state-of-the-art

API call caching, but publicly available information on their

caching strategies is hard to find. Additionally, most mi-

croservice caching papers are application-based, focused on

regional/large-scale caching, or compare very few caching

strategies together.

State of the art.
The state-of-the-art for microservice API caching is Mu-

Cache, which proposes a system framework that automati-

cally provides microservice applications with inter-service

caches that improve performance [8]. The paper indicates

that their framework results in lower latency, lower resource

usage, and faster invalidation. However, the caching strate-

gies utilized are simple, with MuCache using a simple key-

value cache layout, LRU eviction policy, and no prefetching.

In addition, the authors do not delve into the impact of dif-

ferent caching strategies.

Both Azure and AWS documentation also discuss caching

for microservices [4] [3]. Similar to MuCache, the caching

strategies that are discussed are simple key-value stores us-

ing Redis or Memcached. They also do not feature different

architectures or prefetching and only discuss simple time-

based eviction policies.

Key challenges.
One key challenge in researching microservice caching is

determining how to create a realistic testing environment for

each caching strategy. Microservices can be large-scale and

diverse, making it difficult to simulate the complex interplay

between services that arise in these deployments. It is also

important to test various cache strategies without potentially

introducing too many additional variables to account for.

Another challenge is how to set up testing and evaluation

metrics to accurately compare and contrast different caching

strategies. Each strategy has its pros and cons as well as an

optimal environment to operate within.We choose a range of

measurements which best represent a cache’s performance

and compare advanced cache strategies against the state-of-

the-art.

Key insights/solutions.
Our goal is to analyze the impact and effectiveness of

various caching strategies for API calls within microservice

architectures. By comparing different caching techniques

and eviction policies, the results inform developers with ac-

tionable insights to optimize caching decisions and select

the most suitable eviction strategies based on empirical eval-

uation.
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When determining which caching strategies to analyze,

we focus on promising strategies that are expected to reduce

latency in microservice systems. We selected four strate-

gies relating to eviction strategies, multi-tiered caching, and

prefetching. These strategies have promising results in other

applications/systems,making them good candidates for caching

API calls.

Evaluation.
To evaluate each caching strategy, each cache strategy is

tested on different workloads in a mock social media envi-

ronment. This is not a complete microservice environment

but is a small fragment of two services that might be in a mi-

croservice application environment. We assume that caching

strategies between two services can transfer to other service

pairs as well. This approach can save resources and quickly

test our caching strategies.

As mentioned, a difficult task is to decide on the metrics

to compare the performance of each caching strategy. Each

strategy performs better in some metrics than others. In

this project, we measure the performance of our strategies

via hit ratio, average response time, average cache hit/miss

response time, cache throughput, and real throughput.

Contributions.
With this paper, we conducted a synthetic analysis on the

impact and effectiveness of various caching strategies for

API calls within microservice architectures. We discovered

caching strategies that work well in certain workloads in

a microservice environment. We encourage more research

into the impact of caching strategies within microservices.

2 OVERVIEW
As mentioned, simulating an entire microservice environ-

ment is costly and hard to analyze. Thus, we assume that

if a caching strategy improves the performance of the API

calls between two individual microservices, this performance

boost should reflect on the entire environment. This has been

demonstrated in recent research such as MuCache [8]. We

can make this assumption because API calls are dependent

only on the two services. For example, if a specific strategy

is effective for a high read workload between two nodes,

then it should also apply to other node pairs with high read

workloads. In a realistic environment, this assumption is

challenged by the fact that microservices are dynamic and

complex, which does not guarantee a static workload distri-

bution between nodes. However, this dynamic nature can be

simulated and can give us accurate insights into how these

caching strategies might perform in a real environment. The

testing environment is small simulation that mimics the

communication between two microservice nodes. With this

testing environment, each cache strategy can be tested effec-

tively on different workload patterns.

Although caching has been utilized in many microser-

vices, there are still improvements that can be made even to

the state-of-the-art microservices. For example, when Meta

characterizes the workload of their caching system, Mem-

Cache, they discuss the distribution of cache misses in their

systems [5]. From their findings, they found that a majority

of their cache misses are eviction and compulsory misses.

In fact, for some pools in Meta, 99% of the cache misses are

compulsory misses. This highlights a need to improve cache

eviction policies and prefetching within microservices. For

our caching strategies, we decided to focus on prefetching,

tiered caching, and sieve, which can help reduce these types

of cache misses.

3 METHODOLOGY
We implemented a simple abstract class for the cache, pro-

viding the basic functions shown in figure 1. We use this

abstraction to quickly implement different caches and test

them in the simulated environment without any concern. We

then implement each of our cache strategies and a baseline

cache on top of the abstract class. We selected the following

caching strategies: sieve, speculative prefetching, tiered
caching, and read-after-write prefetching. We implement

three baseline comparisons to evaluate our strategies: a no-

cache baseline, a state-of-the-art cache utilizing LRU evic-

tion without prefetching, and an ideal cache. The ideal cache

serves as a hypothetical upper bound on caching perfor-

mance. Each caching strategy is different and has unique

designs to improve its performance and hit rate.

get(key) -> return item value given key or None
put(key, value) -> insert item to cache
invalidate(key) -> mark item with key as invalid

Figure 1: Cache Abstract Class Methods

Baselines
Our baseline cache model is a straightforward key-value

cache that uses the least recently used (LRU) eviction strategy.

This method is widely used, including in MuCache, and is

known to work well. To better understand how our caching

strategies compare, we also introduce two extreme cases:

ideal caching and no caching. In an ideal cache, every re-

quest results in a hit, while in a no-cache scenario, every

request is a miss. These two extremes help set the perfor-

mance boundaries, giving us a clear reference point when

evaluating our caching strategies.

SIEVE
SIEVE is a simple but efficient cache eviction algorithm

that improves cache management by using a single queue

along with a "hand" pointer for evictions [6]. It remembers
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if an object has been accessed using a single "visited" bit.

Mostly used items remain in the cache, while the least used

items are evicted when the hand traverses from the tail to the

head of the queue. This design reduces the computational

overhead and increases the throughput.

In an Instagram-like high-read workload environment,

user profile data, follower lists, and activity feeds generate

manyAPI requests. Traditional cachingmethodsmay impose

excessive complexity and computational overhead. SIEVE’s

minimalist design and low-overhead eviction policy allow

for more efficient use of the cache with frequent access user

data still being easily accessible and preventing redundant

unnecessary API calls.

By using SIEVE caching in the Instagram user model,

we expect reduced cache miss ratios, less API latency, and

quicker response times. SIEVE’s performance and low-overhead

architecture can scale better, allowing Instagram to handle

large-scale user interactions more effectively. Furthermore,

unlike traditional LRU-based caches, SIEVE reduces costly

cache promotions, which optimizes further for performance.

Figure 2: Sieve Eviction Algorithm

Speculative Prefetching
Prefetching represents caching strategies that utilize the

data context to improve caching based on locality. When

data is fetched and put in the cache, other data that is likely

to be accessed next is preemptively fetched into the cache.

In our implementation, when a user profile is fetched

from the database, several random friends of that user are

also fetched in anticipation of the possibility of them being

accessed shortly after. For evaluation, the number of friends’

profiles that are fetched is 10% of the cache size, as we use

the number of items instead of size in bytes as the cache size

limit. This number can be adjusted by the user, but we found

that 10% worked well for our particular environment.

LRU is used as the eviction policy. If the cache is full,

prefetching is still performed and items will be evicted to ac-

commodate the prefetched items. There are no other special

invalidation methods implemented. This type of contextual-

locality caching can be done for other systems using devel-

oper knowledge, and can either be hard-coded in or learned

using some machine learning techniques.

Figure 3: Speculative Prefetch Workflow

Tiered Cache
We extend the baseline model with multiple-tier caching.

Tiered caching uses multiple layered tiers of caches to ef-

fectively create a large cache structure with short response

times. Each descending layer features more cache space but

higher cache latency. Our implementation uses a 2 tier cache

design using memory and disk. Like the baseline, the L1

cache stores entries in a memory hash table. Then, we also

add an in-memory lookup table for the L2 cache which stores

entries on the file system. We use LRU for eviction on both

tiers and did not add any special invalidation or prefetching

strategies. We reduced the L1 cache size by half compared

to other strategies to allocate space for the L2 lookup table.

Figure 4: Tiered Cache Architecture
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Read-After-Write
Read-After-Write makes the assumption that when we

write data, that new data may be read soon after. The basic

strategy is to update the data in the cache as well when con-

ducting write operations. This way, the data can be quickly

accessed when it’s being read after being written. While this

general strategy is applicable to any arbitrary application,

our implementation is not as robust due to the simple de-

sign of our API simulation and cache. When the baseline

cache receives a write request, the existing old data would

be invalidated and removed from the cache. When the Read-

After-Write intercepts a write request, it instead fetches the

user data and replaces the invalid data as seen in Figure 5.

While this method is roundabout, we believe that the perfor-

mance difference from the actual method is negligible and

still demonstrates its effectiveness.

Even though the strategy is simple, it requires the devel-

oper to have some knowledge/context about the workloads

between two nodes to satisfy the assumption mentioned be-

fore. Some workloads might be dynamic or hard to analyze,

making this strategy difficult to apply for every situation. In

addition, we are only testing with single data write requests.

If we write multiple data, there will be a latency/computation

penalty that scales as we interact with more data. This could

impact the effectiveness of the strategy, but will not be ad-

dressed for this project. However, this can be studied in

future research.

Figure 5: Read-After-Write Implementation Workflow

4 EVALUATION
We evaluate our caching strategies within a simulated mi-

croservice environment, measuring their performance under

different workloads. Our evaluation is structured to answer

the following key questions:

• How do different caching strategies impact perfor-

mance in microservice environments?

• Under what conditions does each caching strategy

provide the best benefits?

• What are the trade-offs between caching techniques

in terms of latency, throughput, and cache efficiency?

To answer these questions, we describe our testing infras-

tructure, evaluation methodology, benchmarks, workloads,

and results.

4.1 Testing Infrastructure
To analyze and compare our strategies, we designed a sim-

ulated microservice environment. Instead of deploying a

full-scale distributed system, we assume that caching per-

formance observed in API calls between two microservice

nodes can generalize to other microservice pairs. This al-

lows us to conduct controlled and repeatable experiments

efficiently.

Microservice Simulation
We built a small-scale mock social media platform where

users have friends, followers, and posts. The platform is com-

posed of two nodes, and a TinyDB database, a lightweight

NoSQL database, that stores user profiles. To simulate the

interaction between two nodes, we utilized FastAPI, which al-

lows us to run a local server to send GET and PULL requests.

Our FastAPI-based microservice sends GET and POST re-

quests to retrieve or update user profiles, while another node

interacts directly with the database to serve the requests.

This mimics the read-and-write API calls between microser-

vice nodes. The caching layer is implemented between the

API endpoints and the underlying database. Data is stored

in TinyDB, a lightweight NoSQL database.

Data Generation
For our experiment, we populated our databasewith dummy

user profiles. Each user profile consists of a user ID, a name

consisting of first and last names, a follower count that is

just a random integer, a short sentence (around 10 words) bio

and post, and a list of 1 to 50 user IDs representing friends.

Each profile is around 500 bytes.

These profiles are generated using DeepSeek R1 with the

Huggingface endpoint. For reference, the model was set for

text generation, with a temperature of 1.0, top k of 60, and

top p of 0.9 to control the randomness of the output. The max

token count is set to 150. The model is invoked to generate

one profile at a time, with the output filtered using regular

expression. If the output is syntactically correct, it is put in

the database. 1002 profiles are generated this way

We acknowledge that this dummy dataset is far from per-

fect. There are patterns with real user profiles, like having

similar friends if they belong to the same friend group or hav-

ing patterns in their posts and bios. However, with the lim-

ited time we had, we were unable to located a good dummy

dataset that could be converted to serve our framework.With

the use of LLM, we were able to generate enough random

data quickly with enough randomness to simulate real-world

data.
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Figure 6: System Architecture

Artificial Network Latency
Since both FastAPI and TinyDB run in memory on the

same machine, we implemented an artificial 10 ms delay be-

tween them. This reflects the roughly 10-12 ms observed tail

latencies from research in characterizing microservice per-

formance [1]. By adding 10 ms, the total end-to-end latency

more closely reflects real world deployments.

Hardware Setup
All experiments were conducted on Ubuntu Server 24.04

LXC container on a Ryzen 3600X machine with added net-

work delays for database communication.

4.2 Evaluation Metrics
Each caching strategy optimizes different performance met-

rics. There are also many ways to measure cache perfor-

mance and we choose the below metrics based on research

[2]. Thus, we measure the following metrics:

• Hit Ratio: Fraction of requests served by the cache

instead of the database. Higher hit ratios indicate

better caching performance.

• Average Response Time: End-to-end latency, in-

cluding both cache hits and misses.

• Cache Hit Latency: Time taken to retrieve a cached

item (lower is better).

• CacheMiss Latency: Time taken when a cache miss

occurs, including the database fetch.

• Cache Throughput: Requests per second served by

the cache.

• Real Throughput: Total requests per second pro-

cessed by the system.

4.3 Workloads and Benchmarks
We test our caching strategies across a variety of realistic

workloads, inspired by common access patterns in social

media and networked applications.

Simulated Workloads We evaluate each caching strat-

egy on 10,000 requests per workload, each simulating API

requests between microservices. Since there can be many

patterns of requests, we model 3 read heavy workloads and

2 write heavy workloads, which are common patterns in

microservice applications [7]. We also add include patterns

which reflect data associativity by leveraging user associa-

tions.

• Random Read-Only (100% Reads): Emulates an-

alytics or web crawling where reads are purely ran-

dom.

• Read-Heavy (80% Reads, 20% Writes): Simulates

a microservice handling frequent profile views with

occasional updates.

• Write-Heavy (80%Writes, 20% Reads): Represents
applicationswith frequent updates (e.g., status changes).

• Frequent Users (Top 10 Users Accessed 70% of
Time): Models scenarios where a subset of users (e.g.,

influencers) receive disproportionate traffic.

• Frequent After Write (R after W): A user who

just updated their profile or posted content is highly

likely to be accessed soon.

• Friend-Based Access (Friend Read-Only): Users
access a profile and then, with a high probability,

access the user’s friend’s profile.

Friend Read-Only Variations. For friend-based access,

we experiment with different probabilities of accessing a
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friend after a user profile lookup. We test 25%, 50%, and 75%

probabilities.

4.4 Results and Analysis
We analyze the experimental results from our evaluation

across different caching strategies. The raw results are in-

cluded in

Cache Miss Ratio.

Figure 7: Cache Miss Ratio Across Workloads

Across read heavy workloads, Tiered cache and Specula-

tive Prefetching performed well with the lowest miss rate.

Note that the ideal cache is not shown because its hit rate is

always 0. Sieve performed about as well as the baseline in

all tests. On write heavy workloads, Speculative Prefetching

and Read-After-Write performed well on the friends based

associative workload and read after write workload, respec-

tively.

Throughput Comparison.

Figure 8: Throughput Comparison Across Caching
Strategies

The throughput mostly reflected the miss rate of each

cache and shows that Tiered and Speculative Prefetching

performed well on most read heavy tasks. Read-After-Write

also had high throughput on the read after write test. How-

ever, SIEVE perfomed significantly worse than the baseline.

Also note that each strategy is still far from the ideal cache

throughput, indicating more room for improvement. Finally,

write-heavy workloads showed lower throughput, indicating

that traditional caches struggle may frequent updates.

Cache Miss Latency.

Figure 9: Cache Miss Latency Across Strategies

This test shows the cache’s latency overhead on a cache

miss. Ideally, there would be minimal overhead. Most strate-

gies had similar average cache miss latency compared to

the baseline, which is expected. However, SIEVE had signifi-

cantly more latency on cache misses, which explains its poor

throughput performance. We discuss reasons for this in 4.6.

Ideal cache has no miss latency.

Cache Hit Latency.

Figure 10: Cache Hit Latency Across Strategies

This test measures the cache’s latency on a cache hit. The

results show that most caches were able to respond in a few

microseconds, which reflects the latency of system memory.
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However, the Tiered cache had significantly higher latency,

which is likely due to retrieving cache items from the file

system. The ideal cache had the highest latency of several

milliseconds simply because the database was used as the

cache, and this is reflected in the latency. No cache does not

have hit latency.

Cache Performance Per Workload Type.

Figure 11: Cache Performance Across Strategies

We again show the throughput for each cache on each

workload. The heatmap shows which caches are best suited

for each workload. Tiered cache performed well across many

workloads, and both prefetching caches performed well on

their respective workloads. In general, caches perform best

under workloads with strong locality patterns, and did not

perform well without power-law assumptions.

4.5 Insights for Developers
Based on these results, we provide the following insights for

microservice developers:

• For Read-Heavy Workloads: Speculative Prefetch-
ing and Tiered Caching are the best choices.

• For Write-Heavy Workloads: None of the tested
caches performed well. More research is needed into

write-optimized caches.

• For Social Media and API Calls: Read-After-Write

Caching and Prefetching perform the best.

• For Large-Scale Applications: Tiered Caching ef-

fectively balances storage size and latency.

• For Friend-Based or Power-LawWorkloads: Prefetch-
ing and Read-After-Write outperform traditional LRU

caches.

• Utilizing extra disk space could be a useful approach

to increasing cache performance. If a microservice

instance has access to some extra unused disk space

which is low latency, developers should utilize this.

This result also highlights a possible justification for

cloud providers to include or sell some disk space for

this use as well. If storage cost is less than memory

cost, cloud providers may save money if microservice

caches switch to a multi-tiered model which lever-

ages memory and disk together.

4.6 Limitations and Future Work
• Simulation vs. Real Deployments: Our experi-
ments were conducted in a controlled simulated en-

vironment. Future work should test these caching

strategies in real-world microservice deployments

such as DeathStarBench. Additionally, future work
can modify the MuCache architecture directly and

test improvements on its caching strategy.

• Tiered Caching I/O Considerations: In our exper-

iments, the multi-tiered cache performed well due

to its balance of response time and cache size. They

showed that an increase to cache size at the cost of

latency can still result in improved throughput and

average end-to-end latency. However, this is only

the case if both the L1 and L2 caches have signifi-

cantly lower latency than the network. As a result,

our results may not reflect real microservice deploy-

ments where disk space may often be on a network

attached storage. It remains to be seen whether this

type of cachewill still performwell, although it seems

unlikely since the network latency would not be by-

passed even on a cache hit.

• Impact of Workload Distribution: Our study sug-

gests that power-law workloads (e.g., Frequent Users)

are fundamental for effective caching. More research

is needed into realistic microservice access patterns.

Future experiments could experiment with traces ob-

tained from real-world APIs (e.g., Twitter API).

• Dynamic Cache Strategy Switching: In real mi-

croservice environments, workloads are sporadic and

dynamic, making these static strategies suboptimal.

Future research can study dynamic caches that change

policies based on analysis of a given workload.

5 CONCLUSION
Our analysis of caching strategies in microservices provides

a foundation for future research and practical caching guide-

lines for developers. We show the impact of caching strate-

gies on various microservice workloads. By understand-

ing the trade-offs between eviction, prefetching, and tiered

caching, developers can design optimized, workload-specific

caching strategies for their applications. We show that each

strategy works well for certain workloads, with prefetching

and multi-tiered cache performing the best all-round. There
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is also room to improve on our results, especially with im-

proving our testing methodology. Future experiments should

attempt to utilize existing benchmarks and explore more

microservice-centric caching strategies to further analyze

the impact of caching strategies in microservice environ-

ments. Ultimately, we hope this project can inspire future

research in this area.
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